Summary: | In this paper, a 300 mm thickness ultra-heavy steel plate was selected as the research object. In addition, special roller quenching equipment and a new testing method were used to measure the quenching temperature curve at different positions of the steel plate. The relationships and corresponding interaction mechanisms between cooling rate, microstructure, and mechanical properties of an ultra-heavy steel plate during roller quenching were investigated. The results indicated that the cooling rate, strength, hardness, and impact energy decreased gradually along the thickness direction of the plate, while the cooling rate, average grain size, and mechanical properties were relatively uniform with little change along the length direction of the plate. The experimental results provide an effective way to further control the microstructure and properties of ultra-heavy steel plates during roller quenching.
|