Pressure generated at the instant of impact between a liquid droplet and solid surface
The prime objective of this study is to answer the question: How large is the pressure developed at the instant of a spherical liquid droplet impact on a solid surface? Engel first proposed that the maximum pressure rise generated by a spherical liquid droplet impact on a solid surface is different...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The Royal Society
2018-01-01
|
Series: | Royal Society Open Science |
Subjects: | |
Online Access: | https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.181101 |
_version_ | 1818161091475144704 |
---|---|
author | Y. Tatekura M. Watanabe K. Kobayashi T. Sanada |
author_facet | Y. Tatekura M. Watanabe K. Kobayashi T. Sanada |
author_sort | Y. Tatekura |
collection | DOAJ |
description | The prime objective of this study is to answer the question: How large is the pressure developed at the instant of a spherical liquid droplet impact on a solid surface? Engel first proposed that the maximum pressure rise generated by a spherical liquid droplet impact on a solid surface is different from the one-dimensional water-hammer pressure by a spherical shape factor (Engel 1955 J. Res. Natl Bur. Stand. 55(5), 281–298). Many researchers have since proposed various factors to accurately predict the maximum pressure rise. We numerically found that the maximum pressure rise can be predicted by the combination of water-hammer theory and the shock relation; then, we analytically extended Engel’s elastic impact model, by realizing that the progression speed of the contact between the gas–liquid interface and the solid surface is much faster than the compression wavefront propagation speed at the instant of the impact. We successfully correct Engel’s theory so that it can accurately provide the maximum pressure rise at the instant of impact between a spherical liquid droplet and solid surface, that is, no shape factor appears in the theory. |
first_indexed | 2024-12-11T16:12:16Z |
format | Article |
id | doaj.art-3d583750dac4441cb3e9274b7cc52040 |
institution | Directory Open Access Journal |
issn | 2054-5703 |
language | English |
last_indexed | 2024-12-11T16:12:16Z |
publishDate | 2018-01-01 |
publisher | The Royal Society |
record_format | Article |
series | Royal Society Open Science |
spelling | doaj.art-3d583750dac4441cb3e9274b7cc520402022-12-22T00:59:03ZengThe Royal SocietyRoyal Society Open Science2054-57032018-01-0151210.1098/rsos.181101181101Pressure generated at the instant of impact between a liquid droplet and solid surfaceY. TatekuraM. WatanabeK. KobayashiT. SanadaThe prime objective of this study is to answer the question: How large is the pressure developed at the instant of a spherical liquid droplet impact on a solid surface? Engel first proposed that the maximum pressure rise generated by a spherical liquid droplet impact on a solid surface is different from the one-dimensional water-hammer pressure by a spherical shape factor (Engel 1955 J. Res. Natl Bur. Stand. 55(5), 281–298). Many researchers have since proposed various factors to accurately predict the maximum pressure rise. We numerically found that the maximum pressure rise can be predicted by the combination of water-hammer theory and the shock relation; then, we analytically extended Engel’s elastic impact model, by realizing that the progression speed of the contact between the gas–liquid interface and the solid surface is much faster than the compression wavefront propagation speed at the instant of the impact. We successfully correct Engel’s theory so that it can accurately provide the maximum pressure rise at the instant of impact between a spherical liquid droplet and solid surface, that is, no shape factor appears in the theory.https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.181101droplet impactimpact pressurewater-hammer pressureshock waveshape factor |
spellingShingle | Y. Tatekura M. Watanabe K. Kobayashi T. Sanada Pressure generated at the instant of impact between a liquid droplet and solid surface Royal Society Open Science droplet impact impact pressure water-hammer pressure shock wave shape factor |
title | Pressure generated at the instant of impact between a liquid droplet and solid surface |
title_full | Pressure generated at the instant of impact between a liquid droplet and solid surface |
title_fullStr | Pressure generated at the instant of impact between a liquid droplet and solid surface |
title_full_unstemmed | Pressure generated at the instant of impact between a liquid droplet and solid surface |
title_short | Pressure generated at the instant of impact between a liquid droplet and solid surface |
title_sort | pressure generated at the instant of impact between a liquid droplet and solid surface |
topic | droplet impact impact pressure water-hammer pressure shock wave shape factor |
url | https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.181101 |
work_keys_str_mv | AT ytatekura pressuregeneratedattheinstantofimpactbetweenaliquiddropletandsolidsurface AT mwatanabe pressuregeneratedattheinstantofimpactbetweenaliquiddropletandsolidsurface AT kkobayashi pressuregeneratedattheinstantofimpactbetweenaliquiddropletandsolidsurface AT tsanada pressuregeneratedattheinstantofimpactbetweenaliquiddropletandsolidsurface |