Inequalities in Riemann–Lebesgue Integrability
In this paper, we prove some inequalities for Riemann–Lebesgue integrable functions when the considered integration is obtained via a non-additive measure, including the reverse Hölder inequality and the reverse Minkowski inequality. Then, we generalize these inequalities to the framework of a multi...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-12-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/12/1/49 |
Summary: | In this paper, we prove some inequalities for Riemann–Lebesgue integrable functions when the considered integration is obtained via a non-additive measure, including the reverse Hölder inequality and the reverse Minkowski inequality. Then, we generalize these inequalities to the framework of a multivalued case, in particular for Riemann–Lebesgue integrable interval-valued multifunctions, and obtain some inequalities, such as a Minkowski-type inequality, a Beckenbach-type inequality and some generalizations of Hölder inequalities. |
---|---|
ISSN: | 2227-7390 |