Inositol Pyrophosphates: Signaling Molecules with Pleiotropic Actions in Mammals

Inositol pyrophosphates (PP-IPs) such as 5-diphosphoinositol pentakisphosphate (5-IP7) are inositol metabolites containing high-energy phosphoanhydride bonds. Biosynthesis of PP-IPs is mediated by IP6 kinases (IP6Ks) and PPIP5 kinases (PPIP5Ks), which transfer phosphate to inositol hexakisphosphate...

Full description

Bibliographic Details
Main Authors: Seulgi Lee, Min-Gyu Kim, Hyoungjoon Ahn, Seyun Kim
Format: Article
Language:English
Published: MDPI AG 2020-05-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/25/9/2208
Description
Summary:Inositol pyrophosphates (PP-IPs) such as 5-diphosphoinositol pentakisphosphate (5-IP7) are inositol metabolites containing high-energy phosphoanhydride bonds. Biosynthesis of PP-IPs is mediated by IP6 kinases (IP6Ks) and PPIP5 kinases (PPIP5Ks), which transfer phosphate to inositol hexakisphosphate (IP6). Pleiotropic actions of PP-IPs are involved in many key biological processes, including growth, vesicular remodeling, and energy homeostasis. PP-IPs function to regulate their target proteins through allosteric interactions or protein pyrophosphorylation. This review summarizes the current understanding of how PP-IPs control mammalian cellular signaling networks in physiology and disease.
ISSN:1420-3049