Review: Comparative methane production in mammalian herbivores
Methane (CH4) production is a ubiquitous, apparently unavoidable side effect of fermentative fibre digestion by symbiotic microbiota in mammalian herbivores. Here, a data compilation is presented of in vivo CH4 measurements in individuals of 37 mammalian herbivore species fed forage-only diets, from...
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2020-01-01
|
Series: | Animal |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S1751731119003161 |
_version_ | 1819063618452324352 |
---|---|
author | M. Clauss M.T. Dittmann C. Vendl K.B. Hagen S. Frei S. Ortmann D.W.H. Müller S. Hammer A.J. Munn A. Schwarm M. Kreuzer |
author_facet | M. Clauss M.T. Dittmann C. Vendl K.B. Hagen S. Frei S. Ortmann D.W.H. Müller S. Hammer A.J. Munn A. Schwarm M. Kreuzer |
author_sort | M. Clauss |
collection | DOAJ |
description | Methane (CH4) production is a ubiquitous, apparently unavoidable side effect of fermentative fibre digestion by symbiotic microbiota in mammalian herbivores. Here, a data compilation is presented of in vivo CH4 measurements in individuals of 37 mammalian herbivore species fed forage-only diets, from the literature and from hitherto unpublished measurements. In contrast to previous claims, absolute CH4 emissions scaled linearly to DM intake, and CH4 yields (per DM or gross energy intake) did not vary significantly with body mass. CH4 physiology hence cannot be construed to represent an intrinsic ruminant or herbivore body size limitation. The dataset does not support traditional dichotomies of CH4 emission intensity between ruminants and nonruminants, or between foregut and hindgut fermenters. Several rodent hindgut fermenters and nonruminant foregut fermenters emit CH4 of a magnitude as high as ruminants of similar size, intake level, digesta retention or gut capacity. By contrast, equids, macropods (kangaroos) and rabbits produce few CH4 and have low CH4 : CO2 ratios for their size, intake level, digesta retention or gut capacity, ruling out these factors as explanation for interspecific variation. These findings lead to the conclusion that still unidentified host-specific factors other than digesta retention characteristics, or the presence of rumination or a foregut, influence CH4 production. Measurements of CH4 yield per digested fibre indicate that the amount of CH4 produced during fibre digestion varies not only across but also within species, possibly pointing towards variation in microbiota functionality. Recent findings on the genetic control of microbiome composition, including methanogens, raise the question about the benefits methanogens provide for many (but apparently not to the same extent for all) species, which possibly prevented the evolution of the hosting of low-methanogenic microbiota across mammals. |
first_indexed | 2024-12-21T15:17:32Z |
format | Article |
id | doaj.art-3d81dbfa5af242d795a1ab163133000b |
institution | Directory Open Access Journal |
issn | 1751-7311 |
language | English |
last_indexed | 2024-12-21T15:17:32Z |
publishDate | 2020-01-01 |
publisher | Elsevier |
record_format | Article |
series | Animal |
spelling | doaj.art-3d81dbfa5af242d795a1ab163133000b2022-12-21T18:59:07ZengElsevierAnimal1751-73112020-01-0114s113s123Review: Comparative methane production in mammalian herbivoresM. Clauss0M.T. Dittmann1C. Vendl2K.B. Hagen3S. Frei4S. Ortmann5D.W.H. Müller6S. Hammer7A.J. Munn8A. Schwarm9M. Kreuzer10Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, 8057 Zurich, SwitzerlandClinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland; ETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, SwitzerlandClinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, 8057 Zurich, SwitzerlandClinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, 8057 Zurich, SwitzerlandClinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, 8057 Zurich, SwitzerlandLeibniz Instiute for Zoo and Wildlife Research, 10315 Berlin, GermanyZoological Garden, 06114 Halle, GermanyNaturschutz-Tierpark, 02826 Görlitz, GermanySchool of Biological, Earth and Environmental Sciences, University of North South Wales, Sydney, NSW 2052, AustraliaETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, SwitzerlandETH Zurich, Institute of Agricultural Sciences, 8092 Zurich, SwitzerlandMethane (CH4) production is a ubiquitous, apparently unavoidable side effect of fermentative fibre digestion by symbiotic microbiota in mammalian herbivores. Here, a data compilation is presented of in vivo CH4 measurements in individuals of 37 mammalian herbivore species fed forage-only diets, from the literature and from hitherto unpublished measurements. In contrast to previous claims, absolute CH4 emissions scaled linearly to DM intake, and CH4 yields (per DM or gross energy intake) did not vary significantly with body mass. CH4 physiology hence cannot be construed to represent an intrinsic ruminant or herbivore body size limitation. The dataset does not support traditional dichotomies of CH4 emission intensity between ruminants and nonruminants, or between foregut and hindgut fermenters. Several rodent hindgut fermenters and nonruminant foregut fermenters emit CH4 of a magnitude as high as ruminants of similar size, intake level, digesta retention or gut capacity. By contrast, equids, macropods (kangaroos) and rabbits produce few CH4 and have low CH4 : CO2 ratios for their size, intake level, digesta retention or gut capacity, ruling out these factors as explanation for interspecific variation. These findings lead to the conclusion that still unidentified host-specific factors other than digesta retention characteristics, or the presence of rumination or a foregut, influence CH4 production. Measurements of CH4 yield per digested fibre indicate that the amount of CH4 produced during fibre digestion varies not only across but also within species, possibly pointing towards variation in microbiota functionality. Recent findings on the genetic control of microbiome composition, including methanogens, raise the question about the benefits methanogens provide for many (but apparently not to the same extent for all) species, which possibly prevented the evolution of the hosting of low-methanogenic microbiota across mammals.http://www.sciencedirect.com/science/article/pii/S1751731119003161methanogensmean retention timedigesta washingforegut fermentationhindgut fermentation |
spellingShingle | M. Clauss M.T. Dittmann C. Vendl K.B. Hagen S. Frei S. Ortmann D.W.H. Müller S. Hammer A.J. Munn A. Schwarm M. Kreuzer Review: Comparative methane production in mammalian herbivores Animal methanogens mean retention time digesta washing foregut fermentation hindgut fermentation |
title | Review: Comparative methane production in mammalian herbivores |
title_full | Review: Comparative methane production in mammalian herbivores |
title_fullStr | Review: Comparative methane production in mammalian herbivores |
title_full_unstemmed | Review: Comparative methane production in mammalian herbivores |
title_short | Review: Comparative methane production in mammalian herbivores |
title_sort | review comparative methane production in mammalian herbivores |
topic | methanogens mean retention time digesta washing foregut fermentation hindgut fermentation |
url | http://www.sciencedirect.com/science/article/pii/S1751731119003161 |
work_keys_str_mv | AT mclauss reviewcomparativemethaneproductioninmammalianherbivores AT mtdittmann reviewcomparativemethaneproductioninmammalianherbivores AT cvendl reviewcomparativemethaneproductioninmammalianherbivores AT kbhagen reviewcomparativemethaneproductioninmammalianherbivores AT sfrei reviewcomparativemethaneproductioninmammalianherbivores AT sortmann reviewcomparativemethaneproductioninmammalianherbivores AT dwhmuller reviewcomparativemethaneproductioninmammalianherbivores AT shammer reviewcomparativemethaneproductioninmammalianherbivores AT ajmunn reviewcomparativemethaneproductioninmammalianherbivores AT aschwarm reviewcomparativemethaneproductioninmammalianherbivores AT mkreuzer reviewcomparativemethaneproductioninmammalianherbivores |