Application of the Method of Quasi-Normal Forms to the Mathematical Model of a Single Neuron

We consider a scalar nonlinear differential-difference equation with two delays, which models the behavior of a single neuron. Under some additional suppositions for this equation it is applied a well-known method of quasi-normal forms. Its essence lies in the formal normalization of the Poincare –...

Full description

Bibliographic Details
Main Author: M. M. Preobrazhenskaia
Format: Article
Language:English
Published: Yaroslavl State University 2014-10-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/83
_version_ 1797877938153062400
author M. M. Preobrazhenskaia
author_facet M. M. Preobrazhenskaia
author_sort M. M. Preobrazhenskaia
collection DOAJ
description We consider a scalar nonlinear differential-difference equation with two delays, which models the behavior of a single neuron. Under some additional suppositions for this equation it is applied a well-known method of quasi-normal forms. Its essence lies in the formal normalization of the Poincare – Dulac, the production of a quasi-normal form and the subsequent application of the conformity theorems. In this case, the result of the application of quasi-normal forms is a countable system of differential-difference equations, which manages to turn into a boundary value problem of the Korteweg – de Vries equation. The investigation of this boundary value problem allows to make the conclusion about the behavior of the original equation. Namely, for a suitable choice of parameters in the framework of this equation it is implemented the buffer phenomenon consisting in the presence of the bifurcation mechanism for the birth of an arbitrarily large number of stable cycles.
first_indexed 2024-04-10T02:24:43Z
format Article
id doaj.art-3d878edd89c143a2b370e608707d66c0
institution Directory Open Access Journal
issn 1818-1015
2313-5417
language English
last_indexed 2024-04-10T02:24:43Z
publishDate 2014-10-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj.art-3d878edd89c143a2b370e608707d66c02023-03-13T08:07:32ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172014-10-01215384810.18255/1818-1015-2014-5-38-4877Application of the Method of Quasi-Normal Forms to the Mathematical Model of a Single NeuronM. M. Preobrazhenskaia0Ярославский государственный университет им. П. Г. ДемидоваWe consider a scalar nonlinear differential-difference equation with two delays, which models the behavior of a single neuron. Under some additional suppositions for this equation it is applied a well-known method of quasi-normal forms. Its essence lies in the formal normalization of the Poincare – Dulac, the production of a quasi-normal form and the subsequent application of the conformity theorems. In this case, the result of the application of quasi-normal forms is a countable system of differential-difference equations, which manages to turn into a boundary value problem of the Korteweg – de Vries equation. The investigation of this boundary value problem allows to make the conclusion about the behavior of the original equation. Namely, for a suitable choice of parameters in the framework of this equation it is implemented the buffer phenomenon consisting in the presence of the bifurcation mechanism for the birth of an arbitrarily large number of stable cycles.https://www.mais-journal.ru/jour/article/view/83буферностьдифференциально-разностное уравнениеасимптотикаустойчивостьуравнение кортевега – де фризаквазинормальные формы
spellingShingle M. M. Preobrazhenskaia
Application of the Method of Quasi-Normal Forms to the Mathematical Model of a Single Neuron
Моделирование и анализ информационных систем
буферность
дифференциально-разностное уравнение
асимптотика
устойчивость
уравнение кортевега – де фриза
квазинормальные формы
title Application of the Method of Quasi-Normal Forms to the Mathematical Model of a Single Neuron
title_full Application of the Method of Quasi-Normal Forms to the Mathematical Model of a Single Neuron
title_fullStr Application of the Method of Quasi-Normal Forms to the Mathematical Model of a Single Neuron
title_full_unstemmed Application of the Method of Quasi-Normal Forms to the Mathematical Model of a Single Neuron
title_short Application of the Method of Quasi-Normal Forms to the Mathematical Model of a Single Neuron
title_sort application of the method of quasi normal forms to the mathematical model of a single neuron
topic буферность
дифференциально-разностное уравнение
асимптотика
устойчивость
уравнение кортевега – де фриза
квазинормальные формы
url https://www.mais-journal.ru/jour/article/view/83
work_keys_str_mv AT mmpreobrazhenskaia applicationofthemethodofquasinormalformstothemathematicalmodelofasingleneuron