Haloarchaea swim slowly for optimal chemotactic efficiency in low nutrient environments

Brownian motion places the ultimate limit on microorganisms’ ability to navigate. Thornton et al. show that Haloarchaea have a strategy of slow swimming and infrequent reorientation that exploits the randomising nature of Brownian motion to achieve optimal chemotaxis at the thermodynamic limit.

Bibliographic Details
Main Authors: Katie L. Thornton, Jaimi K. Butler, Seth J. Davis, Bonnie K. Baxter, Laurence G. Wilson
Format: Article
Language:English
Published: Nature Portfolio 2020-09-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-020-18253-7
_version_ 1818570619267055616
author Katie L. Thornton
Jaimi K. Butler
Seth J. Davis
Bonnie K. Baxter
Laurence G. Wilson
author_facet Katie L. Thornton
Jaimi K. Butler
Seth J. Davis
Bonnie K. Baxter
Laurence G. Wilson
author_sort Katie L. Thornton
collection DOAJ
description Brownian motion places the ultimate limit on microorganisms’ ability to navigate. Thornton et al. show that Haloarchaea have a strategy of slow swimming and infrequent reorientation that exploits the randomising nature of Brownian motion to achieve optimal chemotaxis at the thermodynamic limit.
first_indexed 2024-12-14T13:44:20Z
format Article
id doaj.art-3d8b79cf0b8f45009cda17e5e22ae200
institution Directory Open Access Journal
issn 2041-1723
language English
last_indexed 2024-12-14T13:44:20Z
publishDate 2020-09-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj.art-3d8b79cf0b8f45009cda17e5e22ae2002022-12-21T22:59:22ZengNature PortfolioNature Communications2041-17232020-09-011111910.1038/s41467-020-18253-7Haloarchaea swim slowly for optimal chemotactic efficiency in low nutrient environmentsKatie L. Thornton0Jaimi K. Butler1Seth J. Davis2Bonnie K. Baxter3Laurence G. Wilson4Department of Physics, University of YorkGreat Salt Lake Institute, Westminster CollegeDepartment of Biology, University of YorkGreat Salt Lake Institute, Westminster CollegeDepartment of Physics, University of YorkBrownian motion places the ultimate limit on microorganisms’ ability to navigate. Thornton et al. show that Haloarchaea have a strategy of slow swimming and infrequent reorientation that exploits the randomising nature of Brownian motion to achieve optimal chemotaxis at the thermodynamic limit.https://doi.org/10.1038/s41467-020-18253-7
spellingShingle Katie L. Thornton
Jaimi K. Butler
Seth J. Davis
Bonnie K. Baxter
Laurence G. Wilson
Haloarchaea swim slowly for optimal chemotactic efficiency in low nutrient environments
Nature Communications
title Haloarchaea swim slowly for optimal chemotactic efficiency in low nutrient environments
title_full Haloarchaea swim slowly for optimal chemotactic efficiency in low nutrient environments
title_fullStr Haloarchaea swim slowly for optimal chemotactic efficiency in low nutrient environments
title_full_unstemmed Haloarchaea swim slowly for optimal chemotactic efficiency in low nutrient environments
title_short Haloarchaea swim slowly for optimal chemotactic efficiency in low nutrient environments
title_sort haloarchaea swim slowly for optimal chemotactic efficiency in low nutrient environments
url https://doi.org/10.1038/s41467-020-18253-7
work_keys_str_mv AT katielthornton haloarchaeaswimslowlyforoptimalchemotacticefficiencyinlownutrientenvironments
AT jaimikbutler haloarchaeaswimslowlyforoptimalchemotacticefficiencyinlownutrientenvironments
AT sethjdavis haloarchaeaswimslowlyforoptimalchemotacticefficiencyinlownutrientenvironments
AT bonniekbaxter haloarchaeaswimslowlyforoptimalchemotacticefficiencyinlownutrientenvironments
AT laurencegwilson haloarchaeaswimslowlyforoptimalchemotacticefficiencyinlownutrientenvironments