Vector magnetization of a distribution of cubic particles

A model for the vector magnetization of a distribution of particles with cubic anisotropy is presented. Recent work by the authors modeled the vector magnetization of a distribution of uniaxial particles by decomposing the total magnetization into reversible and irreversible components. In this pape...

Full description

Bibliographic Details
Main Authors: Ali Jamali, Edward Della Torre, Ermanno Cardelli, Hatem ElBidweihy
Format: Article
Language:English
Published: AIP Publishing LLC 2017-05-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/1.4974892
Description
Summary:A model for the vector magnetization of a distribution of particles with cubic anisotropy is presented. Recent work by the authors modeled the vector magnetization of a distribution of uniaxial particles by decomposing the total magnetization into reversible and irreversible components. In this paper, using an energy approach applicable to a generic plane, the model is extended to include cubic anisotropy projected to the (100) plane. The magnitude of the irreversible component is modeled using a Preisach differential-equation approach; however, other valid models can be used. The direction of the reversible component is modeled using the minimum energy approach of the classical Stoner–Wohlfarth model and taking into account the anisotropy field. The formulation of the generalized model is derived and its results are discussed considering (i) oscillation and rotational modes, (ii) lag angle, and (iii) magnetization trajectories.
ISSN:2158-3226