Characterization and Analysis of Porosities in High Pressure Die Cast Aluminum by Using Metallography, X-Ray Radiography, and Micro-Computed Tomography
Mechanical performance of cast aluminum alloys is strongly affected by the defects formed during solidification. For example, fractography studies of the fatigue specimens have shown that fatigue failure in aluminum castings containing defects is almost always initiated from defects, among which por...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1944/13/14/3068 |
_version_ | 1797562917861720064 |
---|---|
author | Ahmad Nourian-Avval Ali Fatemi |
author_facet | Ahmad Nourian-Avval Ali Fatemi |
author_sort | Ahmad Nourian-Avval |
collection | DOAJ |
description | Mechanical performance of cast aluminum alloys is strongly affected by the defects formed during solidification. For example, fractography studies of the fatigue specimens have shown that fatigue failure in aluminum castings containing defects is almost always initiated from defects, among which pores are most detrimental. However, elimination of these pores is neither always economically nor technically possible. This work characterizes defects in high pressure die cast aluminum alloy as an illustrative material, but the methods used can be applicable to other types of castings and defects. The defects were evaluated using metallography as well as micro-computed tomography techniques. The variability of defects between the specimens of two sizes as well as different porosity levels are studied statistically. The distributions of defects based on location within the specimens are also analyzed. Moreover, the maximum defect size within the specimens are estimated using extreme value statistics, which can be used as an input to fatigue life prediction models. Extreme value statistics is applied on both 2D and 3D defect data. The accuracy of each approach is verified by comparing the estimated maximum defect size within the specimens with the maximum observed defects on fracture surfaces of fatigue specimens. |
first_indexed | 2024-03-10T18:35:25Z |
format | Article |
id | doaj.art-3db33392e6184a8cb8551690e34cc951 |
institution | Directory Open Access Journal |
issn | 1996-1944 |
language | English |
last_indexed | 2024-03-10T18:35:25Z |
publishDate | 2020-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Materials |
spelling | doaj.art-3db33392e6184a8cb8551690e34cc9512023-11-20T06:16:57ZengMDPI AGMaterials1996-19442020-07-011314306810.3390/ma13143068Characterization and Analysis of Porosities in High Pressure Die Cast Aluminum by Using Metallography, X-Ray Radiography, and Micro-Computed TomographyAhmad Nourian-Avval0Ali Fatemi1Department of Mechanical Engineering, University of Memphis, Memphis, TN 38152, USADepartment of Mechanical Engineering, University of Memphis, Memphis, TN 38152, USAMechanical performance of cast aluminum alloys is strongly affected by the defects formed during solidification. For example, fractography studies of the fatigue specimens have shown that fatigue failure in aluminum castings containing defects is almost always initiated from defects, among which pores are most detrimental. However, elimination of these pores is neither always economically nor technically possible. This work characterizes defects in high pressure die cast aluminum alloy as an illustrative material, but the methods used can be applicable to other types of castings and defects. The defects were evaluated using metallography as well as micro-computed tomography techniques. The variability of defects between the specimens of two sizes as well as different porosity levels are studied statistically. The distributions of defects based on location within the specimens are also analyzed. Moreover, the maximum defect size within the specimens are estimated using extreme value statistics, which can be used as an input to fatigue life prediction models. Extreme value statistics is applied on both 2D and 3D defect data. The accuracy of each approach is verified by comparing the estimated maximum defect size within the specimens with the maximum observed defects on fracture surfaces of fatigue specimens.https://www.mdpi.com/1996-1944/13/14/3068high pressure die castingdefect characterizationextreme value statisticsaluminum castings |
spellingShingle | Ahmad Nourian-Avval Ali Fatemi Characterization and Analysis of Porosities in High Pressure Die Cast Aluminum by Using Metallography, X-Ray Radiography, and Micro-Computed Tomography Materials high pressure die casting defect characterization extreme value statistics aluminum castings |
title | Characterization and Analysis of Porosities in High Pressure Die Cast Aluminum by Using Metallography, X-Ray Radiography, and Micro-Computed Tomography |
title_full | Characterization and Analysis of Porosities in High Pressure Die Cast Aluminum by Using Metallography, X-Ray Radiography, and Micro-Computed Tomography |
title_fullStr | Characterization and Analysis of Porosities in High Pressure Die Cast Aluminum by Using Metallography, X-Ray Radiography, and Micro-Computed Tomography |
title_full_unstemmed | Characterization and Analysis of Porosities in High Pressure Die Cast Aluminum by Using Metallography, X-Ray Radiography, and Micro-Computed Tomography |
title_short | Characterization and Analysis of Porosities in High Pressure Die Cast Aluminum by Using Metallography, X-Ray Radiography, and Micro-Computed Tomography |
title_sort | characterization and analysis of porosities in high pressure die cast aluminum by using metallography x ray radiography and micro computed tomography |
topic | high pressure die casting defect characterization extreme value statistics aluminum castings |
url | https://www.mdpi.com/1996-1944/13/14/3068 |
work_keys_str_mv | AT ahmadnourianavval characterizationandanalysisofporositiesinhighpressurediecastaluminumbyusingmetallographyxrayradiographyandmicrocomputedtomography AT alifatemi characterizationandanalysisofporositiesinhighpressurediecastaluminumbyusingmetallographyxrayradiographyandmicrocomputedtomography |