The Stress−Dilatancy Behaviour of Artificially Bonded Soils

In this study, the results of triaxial compression tests of some naturally and artificially bonded soils presented in the literature were analysed. It was shown that the three characteristic stages of plastic flow during shear can be identified. In all stages, the stress–dilatancy behaviour could be...

Full description

Bibliographic Details
Main Authors: Zenon Szypcio, Katarzyna Dołżyk-Szypcio
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/20/7068
Description
Summary:In this study, the results of triaxial compression tests of some naturally and artificially bonded soils presented in the literature were analysed. It was shown that the three characteristic stages of plastic flow during shear can be identified. In all stages, the stress–dilatancy behaviour could be approximated by the general linear stress–dilatancy equation of the Frictional State Concept. For many shear tests, the failure states and newly defined dilatant failure states are not identical. The points representing dilatant failure states lie on a straight line, for which the position and slope in the η-D plane depend on the soil type and the amount of cement admixture. This line defines the critical frictional state angle, and its slope for bonded soils is greater than for unbonded soils.
ISSN:1996-1944