Nemytskii operator on generalized bounded variation space

In this paper we show that if the Nemytskii operator maps the (φ, α)-bounded variation space into itself and satisfies some Lipschitz condition, then there are two functions g and h belonging to the (φ, α)-bounded variation space such that f (t, y) = g(t)y + h(t) for all t ∈ [a, b], y ∈ R. To cite...

Full description

Bibliographic Details
Main Authors: René Erlín Castillo, Humberto Rafeiro, Eduard Trousselot
Format: Article
Language:Spanish
Published: Universidad Industrial de Santander 2014-05-01
Series:Revista Integración
Subjects:
Online Access:https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4064
_version_ 1828813832597798912
author René Erlín Castillo
Humberto Rafeiro
Eduard Trousselot
author_facet René Erlín Castillo
Humberto Rafeiro
Eduard Trousselot
author_sort René Erlín Castillo
collection DOAJ
description In this paper we show that if the Nemytskii operator maps the (φ, α)-bounded variation space into itself and satisfies some Lipschitz condition, then there are two functions g and h belonging to the (φ, α)-bounded variation space such that f (t, y) = g(t)y + h(t) for all t ∈ [a, b], y ∈ R. To cite this article: R. E. Castillo, H. Rafeiro, E. Trousselot, Nemytskii operator on generalized bounded variation space, Rev. Integr. Temas Mat. 32 (2014), no. 1, 71–90.
first_indexed 2024-12-12T10:11:00Z
format Article
id doaj.art-3de9ef110914411b9458d2ebb2a0cd60
institution Directory Open Access Journal
issn 0120-419X
2145-8472
language Spanish
last_indexed 2024-12-12T10:11:00Z
publishDate 2014-05-01
publisher Universidad Industrial de Santander
record_format Article
series Revista Integración
spelling doaj.art-3de9ef110914411b9458d2ebb2a0cd602022-12-22T00:27:48ZspaUniversidad Industrial de SantanderRevista Integración0120-419X2145-84722014-05-01321Nemytskii operator on generalized bounded variation spaceRené Erlín Castillo0Humberto Rafeiro1Eduard Trousselot2Universidad Nacional de ColombiaPontificia Universidad JaverianaUniversidad de OrienteIn this paper we show that if the Nemytskii operator maps the (φ, α)-bounded variation space into itself and satisfies some Lipschitz condition, then there are two functions g and h belonging to the (φ, α)-bounded variation space such that f (t, y) = g(t)y + h(t) for all t ∈ [a, b], y ∈ R. To cite this article: R. E. Castillo, H. Rafeiro, E. Trousselot, Nemytskii operator on generalized bounded variation space, Rev. Integr. Temas Mat. 32 (2014), no. 1, 71–90.https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4064Riesz p-variation(φ, α)-bounded variation
spellingShingle René Erlín Castillo
Humberto Rafeiro
Eduard Trousselot
Nemytskii operator on generalized bounded variation space
Revista Integración
Riesz p-variation
(φ, α)-bounded variation
title Nemytskii operator on generalized bounded variation space
title_full Nemytskii operator on generalized bounded variation space
title_fullStr Nemytskii operator on generalized bounded variation space
title_full_unstemmed Nemytskii operator on generalized bounded variation space
title_short Nemytskii operator on generalized bounded variation space
title_sort nemytskii operator on generalized bounded variation space
topic Riesz p-variation
(φ, α)-bounded variation
url https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4064
work_keys_str_mv AT reneerlincastillo nemytskiioperatorongeneralizedboundedvariationspace
AT humbertorafeiro nemytskiioperatorongeneralizedboundedvariationspace
AT eduardtrousselot nemytskiioperatorongeneralizedboundedvariationspace