Wiener Complexity versus the Eccentric Complexity

Let <inline-formula><math display="inline"><semantics><mrow><msub><mi>w</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></semantics></math>&l...

Full description

Bibliographic Details
Main Authors: Martin Knor, Riste Škrekovski
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/1/79
_version_ 1797542802296406016
author Martin Knor
Riste Škrekovski
author_facet Martin Knor
Riste Škrekovski
author_sort Martin Knor
collection DOAJ
description Let <inline-formula><math display="inline"><semantics><mrow><msub><mi>w</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> be the sum of distances from <i>u</i> to all the other vertices of <i>G</i>. The Wiener complexity, <inline-formula><math display="inline"><semantics><mrow><msub><mi>C</mi><mi>W</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, is the number of different values of <inline-formula><math display="inline"><semantics><mrow><msub><mi>w</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> in <i>G</i>, and the eccentric complexity, <inline-formula><math display="inline"><semantics><mrow><msub><mi>C</mi><mi>ec</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, is the number of different eccentricities in <i>G</i>. In this paper, we prove that for every integer <i>c</i> there are infinitely many graphs <i>G</i> such that <inline-formula><math display="inline"><semantics><mrow><msub><mi>C</mi><mi>W</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><msub><mi>C</mi><mi>ec</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>c</mi></mrow></semantics></math></inline-formula>. Moreover, we prove this statement using graphs with the smallest possible cyclomatic number. That is, if <inline-formula><math display="inline"><semantics><mrow><mi>c</mi><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula> we prove this statement using trees, and if <inline-formula><math display="inline"><semantics><mrow><mi>c</mi><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula> we prove it using unicyclic graphs. Further, we prove that <inline-formula><math display="inline"><semantics><mrow><msub><mi>C</mi><mi>ec</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><msub><mi>C</mi><mi>W</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> if <i>G</i> is a unicyclic graph. In our proofs we use that the function <inline-formula><math display="inline"><semantics><mrow><msub><mi>w</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is convex on paths consisting of bridges. This property also promptly implies the already known bound for trees <inline-formula><math display="inline"><semantics><mrow><msub><mi>C</mi><mi>ec</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><msub><mi>C</mi><mi>W</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Finally, we answer in positive an open question by finding infinitely many graphs <i>G</i> with diameter 3 such that <inline-formula><math display="inline"><semantics><mrow><msub><mi>C</mi><mi>ec</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo><</mo><msub><mi>C</mi><mi>W</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-10T13:35:39Z
format Article
id doaj.art-3debd7eb88154b859be8402c9485aeef
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T13:35:39Z
publishDate 2020-12-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-3debd7eb88154b859be8402c9485aeef2023-11-21T07:31:45ZengMDPI AGMathematics2227-73902020-12-01917910.3390/math9010079Wiener Complexity versus the Eccentric ComplexityMartin Knor0Riste Škrekovski1Faculty of Civil Engineering, Slovak University of Technology in Bratislava, Radlinského 11, 81368 Bratislava, SlovakiaFaculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, SloveniaLet <inline-formula><math display="inline"><semantics><mrow><msub><mi>w</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> be the sum of distances from <i>u</i> to all the other vertices of <i>G</i>. The Wiener complexity, <inline-formula><math display="inline"><semantics><mrow><msub><mi>C</mi><mi>W</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, is the number of different values of <inline-formula><math display="inline"><semantics><mrow><msub><mi>w</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> in <i>G</i>, and the eccentric complexity, <inline-formula><math display="inline"><semantics><mrow><msub><mi>C</mi><mi>ec</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>, is the number of different eccentricities in <i>G</i>. In this paper, we prove that for every integer <i>c</i> there are infinitely many graphs <i>G</i> such that <inline-formula><math display="inline"><semantics><mrow><msub><mi>C</mi><mi>W</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><msub><mi>C</mi><mi>ec</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>c</mi></mrow></semantics></math></inline-formula>. Moreover, we prove this statement using graphs with the smallest possible cyclomatic number. That is, if <inline-formula><math display="inline"><semantics><mrow><mi>c</mi><mo>≥</mo><mn>0</mn></mrow></semantics></math></inline-formula> we prove this statement using trees, and if <inline-formula><math display="inline"><semantics><mrow><mi>c</mi><mo><</mo><mn>0</mn></mrow></semantics></math></inline-formula> we prove it using unicyclic graphs. Further, we prove that <inline-formula><math display="inline"><semantics><mrow><msub><mi>C</mi><mi>ec</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>2</mn><msub><mi>C</mi><mi>W</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula> if <i>G</i> is a unicyclic graph. In our proofs we use that the function <inline-formula><math display="inline"><semantics><mrow><msub><mi>w</mi><mi>G</mi></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is convex on paths consisting of bridges. This property also promptly implies the already known bound for trees <inline-formula><math display="inline"><semantics><mrow><msub><mi>C</mi><mi>ec</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><msub><mi>C</mi><mi>W</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>. Finally, we answer in positive an open question by finding infinitely many graphs <i>G</i> with diameter 3 such that <inline-formula><math display="inline"><semantics><mrow><msub><mi>C</mi><mi>ec</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo><</mo><msub><mi>C</mi><mi>W</mi></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/9/1/79graphdiameterwiener indextransmissioneccentricity
spellingShingle Martin Knor
Riste Škrekovski
Wiener Complexity versus the Eccentric Complexity
Mathematics
graph
diameter
wiener index
transmission
eccentricity
title Wiener Complexity versus the Eccentric Complexity
title_full Wiener Complexity versus the Eccentric Complexity
title_fullStr Wiener Complexity versus the Eccentric Complexity
title_full_unstemmed Wiener Complexity versus the Eccentric Complexity
title_short Wiener Complexity versus the Eccentric Complexity
title_sort wiener complexity versus the eccentric complexity
topic graph
diameter
wiener index
transmission
eccentricity
url https://www.mdpi.com/2227-7390/9/1/79
work_keys_str_mv AT martinknor wienercomplexityversustheeccentriccomplexity
AT risteskrekovski wienercomplexityversustheeccentriccomplexity