Biological and Molecular Characterization of a Korean Isolate of Orthotospovirus chrysanthinecrocaulis (Formerly Chrysanthemum Stem Necrosis Virus) Isolated from Chrysanthemum morifolium

Biological and molecular characterization of a Korean isolate of Orthotospovirus chrysanthinecrocaulis (for-merly known as chrysanthemum stem necrosis virus, CSNV) isolated from Chrysanthemum morifolium was determined using host range and sequence analysis in this study. Twenty-three species of indi...

Full description

Bibliographic Details
Main Authors: Seong Hyeon Yoon, Su Bin Lee, Eseul Baek, Ho-Jong Ju, Ju-Yeon Yoon
Format: Article
Language:English
Published: Hanrimwon Publishing Company 2023-09-01
Series:Research in Plant Disease
Subjects:
Online Access:http://www.online-rpd.org/upload/pdf/RPD-2023-29-3-286.pdf
Description
Summary:Biological and molecular characterization of a Korean isolate of Orthotospovirus chrysanthinecrocaulis (for-merly known as chrysanthemum stem necrosis virus, CSNV) isolated from Chrysanthemum morifolium was determined using host range and sequence analysis in this study. Twenty-three species of indicator plants inoculated mechanically CSNV-Kr was investigated for determination of host range. CSNV-Kr induced various local and systemic symptoms in the inoculated plant species. CSNV-Kr could not infect three plant species and induced symptomless in systemic leaves in Nicotiana tabacum cultivars, though the plant samples reacted positively with the antiserum to CSNV by double-antibody sandwich–enzyme-linked immunosorbent assay. The complete genome sequence of CSNV-Kr was determined. The L RNA of CSNV-Kr consists of 8,959 nucleotides (nt) and encodes a putative RNA-dependent RNA polymerase. The M RNA of CSNV-Kr consists of 4,835 nt and encodes the movement protein (NSm) and the glycoprotein precursor (Gn/Gc protein). The S RNA of CNSV-Kr consists of 2,836 nt and encodes NSs protein and N protein. The Gn/Gc and N sequence of CSNV-Kr were compared with those of previously published CSNV isolates originating from different countries at nucleotide and amino acid levels. The Gn/GC sequence of CSNV-Kr shared 98.8−99.5% identity with CSNV isolated from other countries and the N sequence of CSNV-Kr shared 98.8−99.6% identity. No particular region of variability could be found in either grouping of viruses. All of the CSNV isolates did not show any relationship according to geographical origins and isolation hosts, suggesting no distinct segregation of the CSNV isolates.
ISSN:1598-2262
2233-9191