Reconstruction of a windborne insect invasion using a particle dispersal model, historical wind data, and Bayesian analysis of genetic data
Abstract Understanding how invasive species establish and spread is vital for developing effective management strategies for invaded areas and identifying new areas where the risk of invasion is highest. We investigated the explanatory power of dispersal histories reconstructed based on local‐scale...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2014-12-01
|
Series: | Ecology and Evolution |
Subjects: | |
Online Access: | https://doi.org/10.1002/ece3.1206 |
_version_ | 1828717963866275840 |
---|---|
author | Tonya A. Lander Etienne K. Klein Sylvie Oddou‐Muratorio Jean‐Noël Candau Cindy Gidoin Alain Chalon Anne Roig Delphine Fallour Marie‐Anne Auger‐Rozenberg Thomas Boivin |
author_facet | Tonya A. Lander Etienne K. Klein Sylvie Oddou‐Muratorio Jean‐Noël Candau Cindy Gidoin Alain Chalon Anne Roig Delphine Fallour Marie‐Anne Auger‐Rozenberg Thomas Boivin |
author_sort | Tonya A. Lander |
collection | DOAJ |
description | Abstract Understanding how invasive species establish and spread is vital for developing effective management strategies for invaded areas and identifying new areas where the risk of invasion is highest. We investigated the explanatory power of dispersal histories reconstructed based on local‐scale wind data and a regional‐scale wind‐dispersed particle trajectory model for the invasive seed chalcid wasp Megastigmus schimitscheki (Hymenoptera: Torymidae) in France. The explanatory power was tested by: (1) survival analysis of empirical data on M. schimitscheki presence, absence and year of arrival at 52 stands of the wasp's obligate hosts, Cedrus (true cedar trees); and (2) Approximate Bayesian analysis of M. schimitscheki genetic data using a coalescence model. The Bayesian demographic modeling and traditional population genetic analysis suggested that initial invasion across the range was the result of long‐distance dispersal from the longest established sites. The survival analyses of the windborne expansion patterns derived from a particle dispersal model indicated that there was an informative correlation between the M. schimitscheki presence/absence data from the annual surveys and the scenarios based on regional‐scale wind data. These three very different analyses produced highly congruent results supporting our proposal that wind is the most probable vector for passive long‐distance dispersal of this invasive seed wasp. This result confirms that long‐distance dispersal from introduction areas is a likely driver of secondary expansion of alien invasive species. Based on our results, management programs for this and other windborne invasive species may consider (1) focusing effort at the longest established sites and (2) monitoring outlying populations remains critically important due to their influence on rates of spread. We also suggest that there is a distinct need for new analysis methods that have the capacity to combine empirical spatiotemporal field data, genetic data, and environmental data to investigate dispersal and invasion. |
first_indexed | 2024-03-12T14:36:01Z |
format | Article |
id | doaj.art-3df3193438ea4c6c84bdd8c5c862fd1e |
institution | Directory Open Access Journal |
issn | 2045-7758 |
language | English |
last_indexed | 2024-03-12T14:36:01Z |
publishDate | 2014-12-01 |
publisher | Wiley |
record_format | Article |
series | Ecology and Evolution |
spelling | doaj.art-3df3193438ea4c6c84bdd8c5c862fd1e2023-08-17T06:29:14ZengWileyEcology and Evolution2045-77582014-12-014244609462510.1002/ece3.1206Reconstruction of a windborne insect invasion using a particle dispersal model, historical wind data, and Bayesian analysis of genetic dataTonya A. Lander0Etienne K. Klein1Sylvie Oddou‐Muratorio2Jean‐Noël Candau3Cindy Gidoin4Alain Chalon5Anne Roig6Delphine Fallour7Marie‐Anne Auger‐Rozenberg8Thomas Boivin9INRA UR629 Ecologie des Forêts Méditerranéennes F‐84914 Avignon FranceINRA UR546 Unité de Biostatistique et Processus Spatiaux F‐84914 Avignon FranceINRA UR629 Ecologie des Forêts Méditerranéennes F‐84914 Avignon FranceINRA UR629 Ecologie des Forêts Méditerranéennes F‐84914 Avignon FranceINRA UR629 Ecologie des Forêts Méditerranéennes F‐84914 Avignon FranceINRA UR629 Ecologie des Forêts Méditerranéennes F‐84914 Avignon FranceINRA UR629 Ecologie des Forêts Méditerranéennes F‐84914 Avignon FranceINRA UR629 Ecologie des Forêts Méditerranéennes F‐84914 Avignon FranceINRA UR633 Unité de Recherche de Zoologie Forestière F‐45075 Orléans FranceINRA UR629 Ecologie des Forêts Méditerranéennes F‐84914 Avignon FranceAbstract Understanding how invasive species establish and spread is vital for developing effective management strategies for invaded areas and identifying new areas where the risk of invasion is highest. We investigated the explanatory power of dispersal histories reconstructed based on local‐scale wind data and a regional‐scale wind‐dispersed particle trajectory model for the invasive seed chalcid wasp Megastigmus schimitscheki (Hymenoptera: Torymidae) in France. The explanatory power was tested by: (1) survival analysis of empirical data on M. schimitscheki presence, absence and year of arrival at 52 stands of the wasp's obligate hosts, Cedrus (true cedar trees); and (2) Approximate Bayesian analysis of M. schimitscheki genetic data using a coalescence model. The Bayesian demographic modeling and traditional population genetic analysis suggested that initial invasion across the range was the result of long‐distance dispersal from the longest established sites. The survival analyses of the windborne expansion patterns derived from a particle dispersal model indicated that there was an informative correlation between the M. schimitscheki presence/absence data from the annual surveys and the scenarios based on regional‐scale wind data. These three very different analyses produced highly congruent results supporting our proposal that wind is the most probable vector for passive long‐distance dispersal of this invasive seed wasp. This result confirms that long‐distance dispersal from introduction areas is a likely driver of secondary expansion of alien invasive species. Based on our results, management programs for this and other windborne invasive species may consider (1) focusing effort at the longest established sites and (2) monitoring outlying populations remains critically important due to their influence on rates of spread. We also suggest that there is a distinct need for new analysis methods that have the capacity to combine empirical spatiotemporal field data, genetic data, and environmental data to investigate dispersal and invasion.https://doi.org/10.1002/ece3.1206CedrusHYSPLITinvasionlong‐distance dispersalMegastigmusmicrosatellite |
spellingShingle | Tonya A. Lander Etienne K. Klein Sylvie Oddou‐Muratorio Jean‐Noël Candau Cindy Gidoin Alain Chalon Anne Roig Delphine Fallour Marie‐Anne Auger‐Rozenberg Thomas Boivin Reconstruction of a windborne insect invasion using a particle dispersal model, historical wind data, and Bayesian analysis of genetic data Ecology and Evolution Cedrus HYSPLIT invasion long‐distance dispersal Megastigmus microsatellite |
title | Reconstruction of a windborne insect invasion using a particle dispersal model, historical wind data, and Bayesian analysis of genetic data |
title_full | Reconstruction of a windborne insect invasion using a particle dispersal model, historical wind data, and Bayesian analysis of genetic data |
title_fullStr | Reconstruction of a windborne insect invasion using a particle dispersal model, historical wind data, and Bayesian analysis of genetic data |
title_full_unstemmed | Reconstruction of a windborne insect invasion using a particle dispersal model, historical wind data, and Bayesian analysis of genetic data |
title_short | Reconstruction of a windborne insect invasion using a particle dispersal model, historical wind data, and Bayesian analysis of genetic data |
title_sort | reconstruction of a windborne insect invasion using a particle dispersal model historical wind data and bayesian analysis of genetic data |
topic | Cedrus HYSPLIT invasion long‐distance dispersal Megastigmus microsatellite |
url | https://doi.org/10.1002/ece3.1206 |
work_keys_str_mv | AT tonyaalander reconstructionofawindborneinsectinvasionusingaparticledispersalmodelhistoricalwinddataandbayesiananalysisofgeneticdata AT etiennekklein reconstructionofawindborneinsectinvasionusingaparticledispersalmodelhistoricalwinddataandbayesiananalysisofgeneticdata AT sylvieoddoumuratorio reconstructionofawindborneinsectinvasionusingaparticledispersalmodelhistoricalwinddataandbayesiananalysisofgeneticdata AT jeannoelcandau reconstructionofawindborneinsectinvasionusingaparticledispersalmodelhistoricalwinddataandbayesiananalysisofgeneticdata AT cindygidoin reconstructionofawindborneinsectinvasionusingaparticledispersalmodelhistoricalwinddataandbayesiananalysisofgeneticdata AT alainchalon reconstructionofawindborneinsectinvasionusingaparticledispersalmodelhistoricalwinddataandbayesiananalysisofgeneticdata AT anneroig reconstructionofawindborneinsectinvasionusingaparticledispersalmodelhistoricalwinddataandbayesiananalysisofgeneticdata AT delphinefallour reconstructionofawindborneinsectinvasionusingaparticledispersalmodelhistoricalwinddataandbayesiananalysisofgeneticdata AT marieanneaugerrozenberg reconstructionofawindborneinsectinvasionusingaparticledispersalmodelhistoricalwinddataandbayesiananalysisofgeneticdata AT thomasboivin reconstructionofawindborneinsectinvasionusingaparticledispersalmodelhistoricalwinddataandbayesiananalysisofgeneticdata |