Hydraulic flow resistance of epigean and hypogean fish of the family Trichomycteridae (Ostariophysi, Siluriformes)

Critical swimming speeds of four trichomycterid fish species from epigean and hypogean environments were analyzed and compared: Trichomycterus itacarambiensis and Ituglanis passensis, both troglobitic from underground rivers; Trichomycterus brasiliensis, from epigean rivers; and Ituglanis sp., an un...

Full description

Bibliographic Details
Main Authors: Francisco Alexandre Costa Sampaio, Marina Silva Rufino, Paulo Santos Pompeu, Hersília de Andrade е Santos, Rodrigo Lopes Ferreira
Format: Article
Language:English
Published: Pensoft Publishers 2020-10-01
Series:Subterranean Biology
Online Access:https://subtbiol.pensoft.net/article/55064/download/pdf/
Description
Summary:Critical swimming speeds of four trichomycterid fish species from epigean and hypogean environments were analyzed and compared: Trichomycterus itacarambiensis and Ituglanis passensis, both troglobitic from underground rivers; Trichomycterus brasiliensis, from epigean rivers; and Ituglanis sp., an undescribed troglophilic species from an underground stream. Swimming tests were conducted with a non-volitional apparatus in which fish swim against a progressive incremental water velocity until they longer resist the flow. Total length was significantly related to critical speed for only T. itacarambiensis. The critical speed obtained by each species, in decreasing order, with values in lengths per second (lengths/s), were: I. passensis (3.61), T. itacarambiensis (3.49), T. brasiliensis (3.11) and Ituglanis sp. (1.89). Swimming performance differed between the congeners T. itacarambiensis and T. brasiliensis, but did not differed between I. passensis and Ituglanis sp. The greater speed for the troglobitic species compared to that of the troglophilic and epigean species is probably related to seasonal flooding pulses that can be extremely severe in caves. Furthermore, during the tests, fish were observed using their mouth and/or barbels to fasten themselves to the substrate to avoid high flows.
ISSN:1314-2615