Density of Arithmetic Representations of Function Fields

We propose a conjecture on the density of arithmetic points in the deformation space of representations of the \'etale fundamental group in positive characteristic. This? conjecture has applications to \'etale cohomology theory, for example it implies a Hard Lefschetz conjecture. We prove...

Full description

Bibliographic Details
Main Authors: Hélène Esnault, Moritz Kerz
Format: Article
Language:English
Published: Association Epiga 2022-03-01
Series:Épijournal de Géométrie Algébrique
Subjects:
Online Access:https://epiga.episciences.org/6568/pdf
_version_ 1797248736058933248
author Hélène Esnault
Moritz Kerz
author_facet Hélène Esnault
Moritz Kerz
author_sort Hélène Esnault
collection DOAJ
description We propose a conjecture on the density of arithmetic points in the deformation space of representations of the \'etale fundamental group in positive characteristic. This? conjecture has applications to \'etale cohomology theory, for example it implies a Hard Lefschetz conjecture. We prove the density conjecture in tame degree two for the curve $\mathbb{P}^1\setminus \{0,1,\infty\}$. v2: very small typos corrected.v3: final. Publication in Epiga.
first_indexed 2024-04-24T20:19:19Z
format Article
id doaj.art-3df83f0a630d4df885bf14799f9c3c1a
institution Directory Open Access Journal
issn 2491-6765
language English
last_indexed 2024-04-24T20:19:19Z
publishDate 2022-03-01
publisher Association Epiga
record_format Article
series Épijournal de Géométrie Algébrique
spelling doaj.art-3df83f0a630d4df885bf14799f9c3c1a2024-03-22T09:11:16ZengAssociation EpigaÉpijournal de Géométrie Algébrique2491-67652022-03-01Volume 610.46298/epiga.2022.65686568Density of Arithmetic Representations of Function FieldsHélène EsnaultMoritz KerzWe propose a conjecture on the density of arithmetic points in the deformation space of representations of the \'etale fundamental group in positive characteristic. This? conjecture has applications to \'etale cohomology theory, for example it implies a Hard Lefschetz conjecture. We prove the density conjecture in tame degree two for the curve $\mathbb{P}^1\setminus \{0,1,\infty\}$. v2: very small typos corrected.v3: final. Publication in Epiga.https://epiga.episciences.org/6568/pdfmathematics - algebraic geometrymathematics - number theory11g99, 14g99
spellingShingle Hélène Esnault
Moritz Kerz
Density of Arithmetic Representations of Function Fields
Épijournal de Géométrie Algébrique
mathematics - algebraic geometry
mathematics - number theory
11g99, 14g99
title Density of Arithmetic Representations of Function Fields
title_full Density of Arithmetic Representations of Function Fields
title_fullStr Density of Arithmetic Representations of Function Fields
title_full_unstemmed Density of Arithmetic Representations of Function Fields
title_short Density of Arithmetic Representations of Function Fields
title_sort density of arithmetic representations of function fields
topic mathematics - algebraic geometry
mathematics - number theory
11g99, 14g99
url https://epiga.episciences.org/6568/pdf
work_keys_str_mv AT heleneesnault densityofarithmeticrepresentationsoffunctionfields
AT moritzkerz densityofarithmeticrepresentationsoffunctionfields