Density of Arithmetic Representations of Function Fields
We propose a conjecture on the density of arithmetic points in the deformation space of representations of the \'etale fundamental group in positive characteristic. This? conjecture has applications to \'etale cohomology theory, for example it implies a Hard Lefschetz conjecture. We prove...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Association Epiga
2022-03-01
|
Series: | Épijournal de Géométrie Algébrique |
Subjects: | |
Online Access: | https://epiga.episciences.org/6568/pdf |
_version_ | 1797248736058933248 |
---|---|
author | Hélène Esnault Moritz Kerz |
author_facet | Hélène Esnault Moritz Kerz |
author_sort | Hélène Esnault |
collection | DOAJ |
description | We propose a conjecture on the density of arithmetic points in the
deformation space of representations of the \'etale fundamental group in
positive characteristic. This? conjecture has applications to \'etale
cohomology theory, for example it implies a Hard Lefschetz conjecture. We prove
the density conjecture in tame degree two for the curve $\mathbb{P}^1\setminus
\{0,1,\infty\}$. v2: very small typos corrected.v3: final. Publication in
Epiga. |
first_indexed | 2024-04-24T20:19:19Z |
format | Article |
id | doaj.art-3df83f0a630d4df885bf14799f9c3c1a |
institution | Directory Open Access Journal |
issn | 2491-6765 |
language | English |
last_indexed | 2024-04-24T20:19:19Z |
publishDate | 2022-03-01 |
publisher | Association Epiga |
record_format | Article |
series | Épijournal de Géométrie Algébrique |
spelling | doaj.art-3df83f0a630d4df885bf14799f9c3c1a2024-03-22T09:11:16ZengAssociation EpigaÉpijournal de Géométrie Algébrique2491-67652022-03-01Volume 610.46298/epiga.2022.65686568Density of Arithmetic Representations of Function FieldsHélène EsnaultMoritz KerzWe propose a conjecture on the density of arithmetic points in the deformation space of representations of the \'etale fundamental group in positive characteristic. This? conjecture has applications to \'etale cohomology theory, for example it implies a Hard Lefschetz conjecture. We prove the density conjecture in tame degree two for the curve $\mathbb{P}^1\setminus \{0,1,\infty\}$. v2: very small typos corrected.v3: final. Publication in Epiga.https://epiga.episciences.org/6568/pdfmathematics - algebraic geometrymathematics - number theory11g99, 14g99 |
spellingShingle | Hélène Esnault Moritz Kerz Density of Arithmetic Representations of Function Fields Épijournal de Géométrie Algébrique mathematics - algebraic geometry mathematics - number theory 11g99, 14g99 |
title | Density of Arithmetic Representations of Function Fields |
title_full | Density of Arithmetic Representations of Function Fields |
title_fullStr | Density of Arithmetic Representations of Function Fields |
title_full_unstemmed | Density of Arithmetic Representations of Function Fields |
title_short | Density of Arithmetic Representations of Function Fields |
title_sort | density of arithmetic representations of function fields |
topic | mathematics - algebraic geometry mathematics - number theory 11g99, 14g99 |
url | https://epiga.episciences.org/6568/pdf |
work_keys_str_mv | AT heleneesnault densityofarithmeticrepresentationsoffunctionfields AT moritzkerz densityofarithmeticrepresentationsoffunctionfields |