Modelling the seasonal epidemics of respiratory syncytial virus in young children.

BACKGROUND: Respiratory syncytial virus (RSV) is a major cause of paediatric morbidity. Mathematical models can be used to characterise annual RSV seasonal epidemics and are a valuable tool to assess the impact of future vaccines. OBJECTIVES: Construct a mathematical model of seasonal epidemics of R...

Full description

Bibliographic Details
Main Authors: Hannah C Moore, Peter Jacoby, Alexandra B Hogan, Christopher C Blyth, Geoffry N Mercer
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4072624?pdf=render
_version_ 1818047647872712704
author Hannah C Moore
Peter Jacoby
Alexandra B Hogan
Christopher C Blyth
Geoffry N Mercer
author_facet Hannah C Moore
Peter Jacoby
Alexandra B Hogan
Christopher C Blyth
Geoffry N Mercer
author_sort Hannah C Moore
collection DOAJ
description BACKGROUND: Respiratory syncytial virus (RSV) is a major cause of paediatric morbidity. Mathematical models can be used to characterise annual RSV seasonal epidemics and are a valuable tool to assess the impact of future vaccines. OBJECTIVES: Construct a mathematical model of seasonal epidemics of RSV and by fitting to a population-level RSV dataset, obtain a better understanding of RSV transmission dynamics. METHODS: We obtained an extensive dataset of weekly RSV testing data in children aged less than 2 years, 2000-2005, for a birth cohort of 245,249 children through linkage of laboratory and birth record datasets. We constructed a seasonally forced compartmental age-structured Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) mathematical model to fit to the seasonal curves of positive RSV detections using the Nelder-Mead method. RESULTS: From 15,830 specimens, 3,394 were positive for RSV. RSV detections exhibited a distinct biennial seasonal pattern with alternating sized peaks in winter months. Our SEIRS model accurately mimicked the observed data with alternating sized peaks using disease parameter values that remained constant across the 6 years of data. Variations in the duration of immunity and recovery periods were explored. The best fit to the data minimising the residual sum of errors was a model using estimates based on previous models in the literature for the infectious period and a slightly lower estimate for the immunity period. CONCLUSIONS: Our age-structured model based on routinely collected population laboratory data accurately captures the observed seasonal epidemic curves. The compartmental SEIRS model, based on several assumptions, now provides a validated base model. Ranges for the disease parameters in the model that could replicate the patterns in the data were identified. Areas for future model developments include fitting climatic variables to the seasonal parameter, allowing parameters to vary according to age and implementing a newborn vaccination program to predict the effect on RSV incidence.
first_indexed 2024-12-10T10:09:07Z
format Article
id doaj.art-3e03d049cb8a4d7784955ded3f061f9a
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-10T10:09:07Z
publishDate 2014-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-3e03d049cb8a4d7784955ded3f061f9a2022-12-22T01:53:11ZengPublic Library of Science (PLoS)PLoS ONE1932-62032014-01-0196e10042210.1371/journal.pone.0100422Modelling the seasonal epidemics of respiratory syncytial virus in young children.Hannah C MoorePeter JacobyAlexandra B HoganChristopher C BlythGeoffry N MercerBACKGROUND: Respiratory syncytial virus (RSV) is a major cause of paediatric morbidity. Mathematical models can be used to characterise annual RSV seasonal epidemics and are a valuable tool to assess the impact of future vaccines. OBJECTIVES: Construct a mathematical model of seasonal epidemics of RSV and by fitting to a population-level RSV dataset, obtain a better understanding of RSV transmission dynamics. METHODS: We obtained an extensive dataset of weekly RSV testing data in children aged less than 2 years, 2000-2005, for a birth cohort of 245,249 children through linkage of laboratory and birth record datasets. We constructed a seasonally forced compartmental age-structured Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) mathematical model to fit to the seasonal curves of positive RSV detections using the Nelder-Mead method. RESULTS: From 15,830 specimens, 3,394 were positive for RSV. RSV detections exhibited a distinct biennial seasonal pattern with alternating sized peaks in winter months. Our SEIRS model accurately mimicked the observed data with alternating sized peaks using disease parameter values that remained constant across the 6 years of data. Variations in the duration of immunity and recovery periods were explored. The best fit to the data minimising the residual sum of errors was a model using estimates based on previous models in the literature for the infectious period and a slightly lower estimate for the immunity period. CONCLUSIONS: Our age-structured model based on routinely collected population laboratory data accurately captures the observed seasonal epidemic curves. The compartmental SEIRS model, based on several assumptions, now provides a validated base model. Ranges for the disease parameters in the model that could replicate the patterns in the data were identified. Areas for future model developments include fitting climatic variables to the seasonal parameter, allowing parameters to vary according to age and implementing a newborn vaccination program to predict the effect on RSV incidence.http://europepmc.org/articles/PMC4072624?pdf=render
spellingShingle Hannah C Moore
Peter Jacoby
Alexandra B Hogan
Christopher C Blyth
Geoffry N Mercer
Modelling the seasonal epidemics of respiratory syncytial virus in young children.
PLoS ONE
title Modelling the seasonal epidemics of respiratory syncytial virus in young children.
title_full Modelling the seasonal epidemics of respiratory syncytial virus in young children.
title_fullStr Modelling the seasonal epidemics of respiratory syncytial virus in young children.
title_full_unstemmed Modelling the seasonal epidemics of respiratory syncytial virus in young children.
title_short Modelling the seasonal epidemics of respiratory syncytial virus in young children.
title_sort modelling the seasonal epidemics of respiratory syncytial virus in young children
url http://europepmc.org/articles/PMC4072624?pdf=render
work_keys_str_mv AT hannahcmoore modellingtheseasonalepidemicsofrespiratorysyncytialvirusinyoungchildren
AT peterjacoby modellingtheseasonalepidemicsofrespiratorysyncytialvirusinyoungchildren
AT alexandrabhogan modellingtheseasonalepidemicsofrespiratorysyncytialvirusinyoungchildren
AT christophercblyth modellingtheseasonalepidemicsofrespiratorysyncytialvirusinyoungchildren
AT geoffrynmercer modellingtheseasonalepidemicsofrespiratorysyncytialvirusinyoungchildren