Gradient estimates for a nonlinear parabolic equation with potential under geometric flow

Let (M,g) be an n dimensional complete Riemannian manifold. In this article we prove local Li-Yau type gradient estimates for all positive solutions to the nonlinear parabolic equation $$ (\partial_t - \Delta_g + \mathcal{R}) u( x, t) = - a u( x, t) \log u( x, t) $$ along the generalised geom...

תיאור מלא

מידע ביבליוגרפי
מחבר ראשי: Abimbola Abolarinwa
פורמט: Article
שפה:English
יצא לאור: Texas State University 2015-01-01
סדרה:Electronic Journal of Differential Equations
נושאים:
גישה מקוונת:http://ejde.math.txstate.edu/Volumes/2015/12/abstr.html
תיאור
סיכום:Let (M,g) be an n dimensional complete Riemannian manifold. In this article we prove local Li-Yau type gradient estimates for all positive solutions to the nonlinear parabolic equation $$ (\partial_t - \Delta_g + \mathcal{R}) u( x, t) = - a u( x, t) \log u( x, t) $$ along the generalised geometric flow on M. Here $\mathcal{R} = \mathcal{R} (x, t)$ is a smooth potential function and a is an arbitrary constant. As an application we derive a global estimate and a space-time Harnack inequality.
ISSN:1072-6691