Transmembrane tumor necrosis factor alpha attenuates pressure-overload cardiac hypertrophy via tumor necrosis factor receptor 2.
Tumor necrosis factor-alpha (TNF-α) plays an important pathogenic role in cardiac hypertrophy and heart failure (HF); however, anti-TNF is paradoxically negative in clinical trials and even worsens HF, indicating a possible protective role of TNF-α in HF. TNF-α exists in transmembrane (tmTNF-α) and...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2020-12-01
|
Series: | PLoS Biology |
Online Access: | https://doi.org/10.1371/journal.pbio.3000967 |
Summary: | Tumor necrosis factor-alpha (TNF-α) plays an important pathogenic role in cardiac hypertrophy and heart failure (HF); however, anti-TNF is paradoxically negative in clinical trials and even worsens HF, indicating a possible protective role of TNF-α in HF. TNF-α exists in transmembrane (tmTNF-α) and soluble (sTNF-α) forms. Herein, we found that TNF receptor 1 (TNFR1) knockout (KO) or knockdown (KD) by short hairpin RNA or small interfering RNA (siRNA) significantly alleviated cardiac hypertrophy, heart dysfunction, fibrosis, and inflammation with increased tmTNF-α expression, whereas TNFR2 KO or KD exacerbated the pathological phenomena with increased sTNF-α secretion in transverse aortic constriction (TAC)- and isoproterenol (ISO)-induced cardiac hypertrophy in vivo and in vitro, respectively, indicating the beneficial effects of TNFR2 associated with tmTNF-α. Suppressing TNF-α converting enzyme by TNF-α Protease Inhibitor-1 (TAPI-1) to increase endogenous tmTNF-α expression significantly alleviated TAC-induced cardiac hypertrophy. Importantly, direct addition of exogenous tmTNF-α into cardiomyocytes in vitro significantly reduced ISO-induced cardiac hypertrophy and transcription of the pro-inflammatory cytokines and induced proliferation. The beneficial effects of tmTNF-α were completely blocked by TNFR2 KD in H9C2 cells and TNFR2 KO in primary myocardial cells. Furthermore, we demonstrated that tmTNF-α displayed antihypertrophic and anti-inflammatory effects by activating the AKT pathway and inhibiting the nuclear factor (NF)-κB pathway via TNFR2. Our data suggest that tmTNF-α exerts cardioprotective effects via TNFR2. Specific targeting of tmTNF-α processing, rather than anti-TNF therapy, may be more useful for the treatment of hypertrophy and HF. |
---|---|
ISSN: | 1544-9173 1545-7885 |