The host jasmonic acid pathway regulates the transcriptomic changes of dodder and host plant under the scenario of caterpillar feeding on dodder

Abstract Background Dodder (Cuscuta spp., Convolvulaceae) species are obligate leaf- and rootless parasites that totally depend on hosts to survive. Dodders naturally graft themselves to host stems to form vascular fusion, from which they obtain nutrients and water. In addition, dodders and their ho...

Full description

Bibliographic Details
Main Authors: Yan Qin, Jingxiong Zhang, Christian Hettenhausen, Hui Liu, Shalan Li, Guojing Shen, Guoyan Cao, Jianqiang Wu
Format: Article
Language:English
Published: BMC 2019-12-01
Series:BMC Plant Biology
Subjects:
Online Access:https://doi.org/10.1186/s12870-019-2161-8
Description
Summary:Abstract Background Dodder (Cuscuta spp., Convolvulaceae) species are obligate leaf- and rootless parasites that totally depend on hosts to survive. Dodders naturally graft themselves to host stems to form vascular fusion, from which they obtain nutrients and water. In addition, dodders and their hosts also exchange various other molecules, including proteins, mRNAs, and small RNAs. It is very likely that vascular fusion also allows inter-plant translocation of systemic signals between dodders and host plants and these systemic signals may have profound impacts on the physiology of dodder and host plants. Herbivory is a common biotic stress for plants. When a dodder parasite is attacked by lepidopteran insects, how dodder responds to caterpillar feeding and whether there are inter-plant communications between the host plants and the parasites is still poorly understood. Results Here, wild-type (WT) tobacco and a tobacco line in which jasmonic acid (JA) biosynthesis was silenced (AOC-RNAi) were used as the hosts, and the responses of dodders and their host plants to herbivory by Spodoptera litura caterpillars on the dodders were investigated. It was found that after caterpillar attack, dodders grown on AOC-RNAi tobacco showed much a smaller number of differentially expressed genes, although the genotypes of the tobacco plants did not have an effect on the simulated S. litura feeding-induced JA accumulation in dodders. We further show that S. litura herbivory on dodder also led to large changes in transcriptome and defensive metabolites in the host tobacco, leading to enhanced resistance to S. litura, and the JA pathway of tobacco host is critical for these systemic responses. Conclusions Our findings indicate that during caterpillar attack on dodder, the JA pathway of host plant is required for the proper transcriptomic responses of both dodder and host plants. This study highlights the importance of the host JA pathway in regulating the inter-plant systemic signaling between dodder and hosts.
ISSN:1471-2229