Summary: | Human postural sway during quiet standing has been characterized as a proportional-integral-derivative controller with intermittent activation. In the model, patterns of sway result from both instantaneous, passive, mechanical resistance and delayed, intermittent resistance signaled by the central nervous system. A Kalman-Filter framework was designed to directly estimate from experimental data the parameters of the model's stochastic delay differential equations with discrete dynamic switching conditions. Simulations showed that all parameters could be estimated over a variety of possible data-generating configurations with varying degrees of bias and variance depending on their empirical identification. Applications to experimental data reveal distributions of each parameter that correspond well to previous findings, suggesting that many useful, physiological measures may be extracted from sway data. Individuals varied in degree and type of deviation from theoretical expectations, ranging from harmonic oscillation to non-equilibrium Langevin dynamics.
|