Tectonic infarct analysis: A computational tool for automated whole-brain infarct analysis from TTC-stained tissue

Background: Infarct volume measured from 2,3,5-triphenyltetrazolium chloride (TTC)-stained brain slices is critical to in vivo stroke models. In this study, we developed an interactive, tunable, software that automatically computes whole-brain infarct metrics from serial TTC-stained brain sections....

Full description

Bibliographic Details
Main Authors: Briana A. Santo, Shiau-Sing K. Ciecierska, S. Mostafa Mousavi Janbeh Sarayi, TaJania D. Jenkins, Ammad A. Baig, Andre Monteiro, Carmon Koenigsknecht, Donald Pionessa, Liza Gutierrez, Robert M. King, Matthew Gounis, Adnan H. Siddiqui, Vincent M. Tutino
Format: Article
Language:English
Published: Elsevier 2023-04-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844023020443
Description
Summary:Background: Infarct volume measured from 2,3,5-triphenyltetrazolium chloride (TTC)-stained brain slices is critical to in vivo stroke models. In this study, we developed an interactive, tunable, software that automatically computes whole-brain infarct metrics from serial TTC-stained brain sections. Methods: Three rat ischemic stroke cohorts were used in this study (Total n = 91 rats; Cohort 1 n = 21, Cohort 2 n = 40, Cohort 3 n = 30). For each, brains were serially-sliced, stained with TTC and scanned on both anterior and posterior sides. Ground truth annotation and infarct morphometric analysis (e.g., brain-Vbrain, infarct-Vinfarct, and non-infarct-Vnon-infarct volumes) were completed by domain experts. We used Cohort 1 for brain and infarct segmentation model development (n = 3 training cases with 36 slices [18 anterior and posterior faces], n = 18 testing cases with 218 slices [109 anterior and posterior faces]), as well as infarct morphometrics automation. The infarct quantification pipeline and pre-trained model were packaged as a standalone software and applied to Cohort 2, an internal validation dataset. Finally, software and model trainability were tested as a use-case with Cohort 3, a dataset from a separate institute. Results: Both high segmentation and statistically significant quantification performance (correlation between manual and software) were observed across all datasets. Segmentation performance: Cohort 1 brain accuracy = 0.95/f1-score = 0.90, infarct accuracy = 0.96/f1-score = 0.89; Cohort 2 brain accuracy = 0.97/f1-score = 0.90, infarct accuracy = 0.97/f1-score = 0.80; Cohort 3 brain accuracy = 0.96/f1-score = 0.92, infarct accuracy = 0.95/f1-score = 0.82. Infarct quantification (cohort average): Vbrain (ρ = 0.87, p < 0.001), Vinfarct (0.92, p < 0.001), Vnon-infarct (0.80, p < 0.001), %infarct (0.87, p = 0.001), and infarct:non-infact ratio (ρ = 0.92, p < 0.001). Conclusion: Tectonic Infarct Analysis software offers a robust and adaptable approach for rapid TTC-based stroke assessment.
ISSN:2405-8440