A multiphase CMAQ version 5.0 adjoint

<p>We present the development of a multiphase adjoint for the Community Multiscale Air Quality (CMAQ) model, a widely used chemical transport model. The adjoint model provides location- and time-specific gradients that can be used in various applications such as backward sensitivity analysis,...

Full description

Bibliographic Details
Main Authors: S. Zhao, M. G. Russell, A. Hakami, S. L. Capps, M. D. Turner, D. K. Henze, P. B. Percell, J. Resler, H. Shen, A. G. Russell, A. Nenes, A. J. Pappin, S. L. Napelenok, J. O. Bash, K. M. Fahey, G. R. Carmichael, C. O. Stanier, T. Chai
Format: Article
Language:English
Published: Copernicus Publications 2020-07-01
Series:Geoscientific Model Development
Online Access:https://gmd.copernicus.org/articles/13/2925/2020/gmd-13-2925-2020.pdf
_version_ 1831648220310142976
author S. Zhao
M. G. Russell
A. Hakami
S. L. Capps
M. D. Turner
D. K. Henze
P. B. Percell
J. Resler
H. Shen
A. G. Russell
A. Nenes
A. Nenes
A. Nenes
A. J. Pappin
S. L. Napelenok
J. O. Bash
K. M. Fahey
G. R. Carmichael
C. O. Stanier
T. Chai
author_facet S. Zhao
M. G. Russell
A. Hakami
S. L. Capps
M. D. Turner
D. K. Henze
P. B. Percell
J. Resler
H. Shen
A. G. Russell
A. Nenes
A. Nenes
A. Nenes
A. J. Pappin
S. L. Napelenok
J. O. Bash
K. M. Fahey
G. R. Carmichael
C. O. Stanier
T. Chai
author_sort S. Zhao
collection DOAJ
description <p>We present the development of a multiphase adjoint for the Community Multiscale Air Quality (CMAQ) model, a widely used chemical transport model. The adjoint model provides location- and time-specific gradients that can be used in various applications such as backward sensitivity analysis, source attribution, optimal pollution control, data assimilation, and inverse modeling. The science processes of the CMAQ model include gas-phase chemistry, aerosol dynamics and thermodynamics, cloud chemistry and dynamics, diffusion, and advection. Discrete adjoints are implemented for all the science processes, with an additional continuous adjoint for advection. The development of discrete adjoints is assisted with algorithmic differentiation (AD) tools. Particularly, the Kinetic PreProcessor (KPP) is implemented for gas-phase and aqueous chemistry, and two different automatic differentiation tools are used for other processes such as clouds, aerosols, diffusion, and advection. The continuous adjoint of advection is developed manually. For adjoint validation, the brute-force or finite-difference method (FDM) is implemented process by process with box- or column-model simulations. Due to the inherent limitations of the FDM caused by numerical round-off errors, the complex variable method (CVM) is adopted where necessary. The adjoint model often shows better agreement with the CVM than with the FDM. The adjoints of all science processes compare favorably with the FDM and CVM. In an example application of the full multiphase adjoint model, we provide the first estimates of how emissions of particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) affect public health across the US.</p>
first_indexed 2024-12-19T14:27:05Z
format Article
id doaj.art-3e4ff0e80e894364a3dbe6b87ff69388
institution Directory Open Access Journal
issn 1991-959X
1991-9603
language English
last_indexed 2024-12-19T14:27:05Z
publishDate 2020-07-01
publisher Copernicus Publications
record_format Article
series Geoscientific Model Development
spelling doaj.art-3e4ff0e80e894364a3dbe6b87ff693882022-12-21T20:17:34ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032020-07-01132925294410.5194/gmd-13-2925-2020A multiphase CMAQ version 5.0 adjointS. Zhao0M. G. Russell1A. Hakami2S. L. Capps3M. D. Turner4D. K. Henze5P. B. Percell6J. Resler7H. Shen8A. G. Russell9A. Nenes10A. Nenes11A. Nenes12A. J. Pappin13S. L. Napelenok14J. O. Bash15K. M. Fahey16G. R. Carmichael17C. O. Stanier18T. Chai19Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON K1S 5B6, CanadaDepartment of Civil and Environmental Engineering, Carleton University, Ottawa, ON K1S 5B6, CanadaDepartment of Civil and Environmental Engineering, Carleton University, Ottawa, ON K1S 5B6, CanadaCivil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USASAIC, Stennis Space Center, MS 39529, USAMechanical Engineering Department, University of Colorado, Boulder, CO 80309, USADepartment of Earth & Atmospheric Sciences, University of Houston, Houston, TX 77204, USAInstitute of Computer Science of the Czech Academy of Sciences, Prague, 182 07, Czech RepublicSchool of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30331, USASchool of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30331, USASchool of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30331, USASchool of Architecture, Civil & Environmental Engineering, École polytechnique fédérale de Lausanne, 1015, Lausanne, SwitzerlandInstitute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, 26504, GreeceAir Health Effects Division, Health Canada, Ottawa, ON K1A 0K9, CanadaAtmospheric & Environmental Systems Modeling Division, U.S. EPA, Research Triangle Park, NC 27711, USAAtmospheric & Environmental Systems Modeling Division, U.S. EPA, Research Triangle Park, NC 27711, USAAtmospheric & Environmental Systems Modeling Division, U.S. EPA, Research Triangle Park, NC 27711, USADepartment of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USADepartment of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USACollege of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA<p>We present the development of a multiphase adjoint for the Community Multiscale Air Quality (CMAQ) model, a widely used chemical transport model. The adjoint model provides location- and time-specific gradients that can be used in various applications such as backward sensitivity analysis, source attribution, optimal pollution control, data assimilation, and inverse modeling. The science processes of the CMAQ model include gas-phase chemistry, aerosol dynamics and thermodynamics, cloud chemistry and dynamics, diffusion, and advection. Discrete adjoints are implemented for all the science processes, with an additional continuous adjoint for advection. The development of discrete adjoints is assisted with algorithmic differentiation (AD) tools. Particularly, the Kinetic PreProcessor (KPP) is implemented for gas-phase and aqueous chemistry, and two different automatic differentiation tools are used for other processes such as clouds, aerosols, diffusion, and advection. The continuous adjoint of advection is developed manually. For adjoint validation, the brute-force or finite-difference method (FDM) is implemented process by process with box- or column-model simulations. Due to the inherent limitations of the FDM caused by numerical round-off errors, the complex variable method (CVM) is adopted where necessary. The adjoint model often shows better agreement with the CVM than with the FDM. The adjoints of all science processes compare favorably with the FDM and CVM. In an example application of the full multiphase adjoint model, we provide the first estimates of how emissions of particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) affect public health across the US.</p>https://gmd.copernicus.org/articles/13/2925/2020/gmd-13-2925-2020.pdf
spellingShingle S. Zhao
M. G. Russell
A. Hakami
S. L. Capps
M. D. Turner
D. K. Henze
P. B. Percell
J. Resler
H. Shen
A. G. Russell
A. Nenes
A. Nenes
A. Nenes
A. J. Pappin
S. L. Napelenok
J. O. Bash
K. M. Fahey
G. R. Carmichael
C. O. Stanier
T. Chai
A multiphase CMAQ version 5.0 adjoint
Geoscientific Model Development
title A multiphase CMAQ version 5.0 adjoint
title_full A multiphase CMAQ version 5.0 adjoint
title_fullStr A multiphase CMAQ version 5.0 adjoint
title_full_unstemmed A multiphase CMAQ version 5.0 adjoint
title_short A multiphase CMAQ version 5.0 adjoint
title_sort multiphase cmaq version 5 0 adjoint
url https://gmd.copernicus.org/articles/13/2925/2020/gmd-13-2925-2020.pdf
work_keys_str_mv AT szhao amultiphasecmaqversion50adjoint
AT mgrussell amultiphasecmaqversion50adjoint
AT ahakami amultiphasecmaqversion50adjoint
AT slcapps amultiphasecmaqversion50adjoint
AT mdturner amultiphasecmaqversion50adjoint
AT dkhenze amultiphasecmaqversion50adjoint
AT pbpercell amultiphasecmaqversion50adjoint
AT jresler amultiphasecmaqversion50adjoint
AT hshen amultiphasecmaqversion50adjoint
AT agrussell amultiphasecmaqversion50adjoint
AT anenes amultiphasecmaqversion50adjoint
AT anenes amultiphasecmaqversion50adjoint
AT anenes amultiphasecmaqversion50adjoint
AT ajpappin amultiphasecmaqversion50adjoint
AT slnapelenok amultiphasecmaqversion50adjoint
AT jobash amultiphasecmaqversion50adjoint
AT kmfahey amultiphasecmaqversion50adjoint
AT grcarmichael amultiphasecmaqversion50adjoint
AT costanier amultiphasecmaqversion50adjoint
AT tchai amultiphasecmaqversion50adjoint
AT szhao multiphasecmaqversion50adjoint
AT mgrussell multiphasecmaqversion50adjoint
AT ahakami multiphasecmaqversion50adjoint
AT slcapps multiphasecmaqversion50adjoint
AT mdturner multiphasecmaqversion50adjoint
AT dkhenze multiphasecmaqversion50adjoint
AT pbpercell multiphasecmaqversion50adjoint
AT jresler multiphasecmaqversion50adjoint
AT hshen multiphasecmaqversion50adjoint
AT agrussell multiphasecmaqversion50adjoint
AT anenes multiphasecmaqversion50adjoint
AT anenes multiphasecmaqversion50adjoint
AT anenes multiphasecmaqversion50adjoint
AT ajpappin multiphasecmaqversion50adjoint
AT slnapelenok multiphasecmaqversion50adjoint
AT jobash multiphasecmaqversion50adjoint
AT kmfahey multiphasecmaqversion50adjoint
AT grcarmichael multiphasecmaqversion50adjoint
AT costanier multiphasecmaqversion50adjoint
AT tchai multiphasecmaqversion50adjoint