A multiphase CMAQ version 5.0 adjoint
<p>We present the development of a multiphase adjoint for the Community Multiscale Air Quality (CMAQ) model, a widely used chemical transport model. The adjoint model provides location- and time-specific gradients that can be used in various applications such as backward sensitivity analysis,...
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2020-07-01
|
Series: | Geoscientific Model Development |
Online Access: | https://gmd.copernicus.org/articles/13/2925/2020/gmd-13-2925-2020.pdf |
_version_ | 1831648220310142976 |
---|---|
author | S. Zhao M. G. Russell A. Hakami S. L. Capps M. D. Turner D. K. Henze P. B. Percell J. Resler H. Shen A. G. Russell A. Nenes A. Nenes A. Nenes A. J. Pappin S. L. Napelenok J. O. Bash K. M. Fahey G. R. Carmichael C. O. Stanier T. Chai |
author_facet | S. Zhao M. G. Russell A. Hakami S. L. Capps M. D. Turner D. K. Henze P. B. Percell J. Resler H. Shen A. G. Russell A. Nenes A. Nenes A. Nenes A. J. Pappin S. L. Napelenok J. O. Bash K. M. Fahey G. R. Carmichael C. O. Stanier T. Chai |
author_sort | S. Zhao |
collection | DOAJ |
description | <p>We present the development of a multiphase adjoint for
the Community Multiscale Air Quality (CMAQ) model, a widely used chemical
transport model. The adjoint model provides location- and time-specific gradients
that can be used in various applications such as backward sensitivity
analysis, source attribution, optimal pollution control, data assimilation,
and inverse modeling. The science processes of the CMAQ model include
gas-phase chemistry, aerosol dynamics and thermodynamics, cloud chemistry and dynamics, diffusion, and
advection. Discrete adjoints are implemented for all the science processes,
with an additional continuous adjoint for advection. The development of
discrete adjoints is assisted with algorithmic differentiation (AD) tools.
Particularly, the Kinetic PreProcessor (KPP) is implemented for gas-phase
and aqueous chemistry, and two different automatic differentiation tools are
used for other processes such as clouds, aerosols, diffusion, and advection.
The continuous adjoint of advection is developed manually. For adjoint
validation, the brute-force or finite-difference method (FDM) is implemented
process by process with box- or column-model simulations. Due to the
inherent limitations of the FDM caused by numerical round-off errors, the
complex variable method (CVM) is adopted where necessary. The adjoint model
often shows better agreement with the CVM than with the FDM. The adjoints of
all science processes compare favorably with the FDM and CVM. In an example
application of the full multiphase adjoint model, we provide the first
estimates of how emissions of particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) affect public health across the US.</p> |
first_indexed | 2024-12-19T14:27:05Z |
format | Article |
id | doaj.art-3e4ff0e80e894364a3dbe6b87ff69388 |
institution | Directory Open Access Journal |
issn | 1991-959X 1991-9603 |
language | English |
last_indexed | 2024-12-19T14:27:05Z |
publishDate | 2020-07-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Geoscientific Model Development |
spelling | doaj.art-3e4ff0e80e894364a3dbe6b87ff693882022-12-21T20:17:34ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032020-07-01132925294410.5194/gmd-13-2925-2020A multiphase CMAQ version 5.0 adjointS. Zhao0M. G. Russell1A. Hakami2S. L. Capps3M. D. Turner4D. K. Henze5P. B. Percell6J. Resler7H. Shen8A. G. Russell9A. Nenes10A. Nenes11A. Nenes12A. J. Pappin13S. L. Napelenok14J. O. Bash15K. M. Fahey16G. R. Carmichael17C. O. Stanier18T. Chai19Department of Civil and Environmental Engineering, Carleton University, Ottawa, ON K1S 5B6, CanadaDepartment of Civil and Environmental Engineering, Carleton University, Ottawa, ON K1S 5B6, CanadaDepartment of Civil and Environmental Engineering, Carleton University, Ottawa, ON K1S 5B6, CanadaCivil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA 19104, USASAIC, Stennis Space Center, MS 39529, USAMechanical Engineering Department, University of Colorado, Boulder, CO 80309, USADepartment of Earth & Atmospheric Sciences, University of Houston, Houston, TX 77204, USAInstitute of Computer Science of the Czech Academy of Sciences, Prague, 182 07, Czech RepublicSchool of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30331, USASchool of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30331, USASchool of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30331, USASchool of Architecture, Civil & Environmental Engineering, École polytechnique fédérale de Lausanne, 1015, Lausanne, SwitzerlandInstitute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, 26504, GreeceAir Health Effects Division, Health Canada, Ottawa, ON K1A 0K9, CanadaAtmospheric & Environmental Systems Modeling Division, U.S. EPA, Research Triangle Park, NC 27711, USAAtmospheric & Environmental Systems Modeling Division, U.S. EPA, Research Triangle Park, NC 27711, USAAtmospheric & Environmental Systems Modeling Division, U.S. EPA, Research Triangle Park, NC 27711, USADepartment of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USADepartment of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USACollege of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA<p>We present the development of a multiphase adjoint for the Community Multiscale Air Quality (CMAQ) model, a widely used chemical transport model. The adjoint model provides location- and time-specific gradients that can be used in various applications such as backward sensitivity analysis, source attribution, optimal pollution control, data assimilation, and inverse modeling. The science processes of the CMAQ model include gas-phase chemistry, aerosol dynamics and thermodynamics, cloud chemistry and dynamics, diffusion, and advection. Discrete adjoints are implemented for all the science processes, with an additional continuous adjoint for advection. The development of discrete adjoints is assisted with algorithmic differentiation (AD) tools. Particularly, the Kinetic PreProcessor (KPP) is implemented for gas-phase and aqueous chemistry, and two different automatic differentiation tools are used for other processes such as clouds, aerosols, diffusion, and advection. The continuous adjoint of advection is developed manually. For adjoint validation, the brute-force or finite-difference method (FDM) is implemented process by process with box- or column-model simulations. Due to the inherent limitations of the FDM caused by numerical round-off errors, the complex variable method (CVM) is adopted where necessary. The adjoint model often shows better agreement with the CVM than with the FDM. The adjoints of all science processes compare favorably with the FDM and CVM. In an example application of the full multiphase adjoint model, we provide the first estimates of how emissions of particulate matter (PM<span class="inline-formula"><sub>2.5</sub></span>) affect public health across the US.</p>https://gmd.copernicus.org/articles/13/2925/2020/gmd-13-2925-2020.pdf |
spellingShingle | S. Zhao M. G. Russell A. Hakami S. L. Capps M. D. Turner D. K. Henze P. B. Percell J. Resler H. Shen A. G. Russell A. Nenes A. Nenes A. Nenes A. J. Pappin S. L. Napelenok J. O. Bash K. M. Fahey G. R. Carmichael C. O. Stanier T. Chai A multiphase CMAQ version 5.0 adjoint Geoscientific Model Development |
title | A multiphase CMAQ version 5.0 adjoint |
title_full | A multiphase CMAQ version 5.0 adjoint |
title_fullStr | A multiphase CMAQ version 5.0 adjoint |
title_full_unstemmed | A multiphase CMAQ version 5.0 adjoint |
title_short | A multiphase CMAQ version 5.0 adjoint |
title_sort | multiphase cmaq version 5 0 adjoint |
url | https://gmd.copernicus.org/articles/13/2925/2020/gmd-13-2925-2020.pdf |
work_keys_str_mv | AT szhao amultiphasecmaqversion50adjoint AT mgrussell amultiphasecmaqversion50adjoint AT ahakami amultiphasecmaqversion50adjoint AT slcapps amultiphasecmaqversion50adjoint AT mdturner amultiphasecmaqversion50adjoint AT dkhenze amultiphasecmaqversion50adjoint AT pbpercell amultiphasecmaqversion50adjoint AT jresler amultiphasecmaqversion50adjoint AT hshen amultiphasecmaqversion50adjoint AT agrussell amultiphasecmaqversion50adjoint AT anenes amultiphasecmaqversion50adjoint AT anenes amultiphasecmaqversion50adjoint AT anenes amultiphasecmaqversion50adjoint AT ajpappin amultiphasecmaqversion50adjoint AT slnapelenok amultiphasecmaqversion50adjoint AT jobash amultiphasecmaqversion50adjoint AT kmfahey amultiphasecmaqversion50adjoint AT grcarmichael amultiphasecmaqversion50adjoint AT costanier amultiphasecmaqversion50adjoint AT tchai amultiphasecmaqversion50adjoint AT szhao multiphasecmaqversion50adjoint AT mgrussell multiphasecmaqversion50adjoint AT ahakami multiphasecmaqversion50adjoint AT slcapps multiphasecmaqversion50adjoint AT mdturner multiphasecmaqversion50adjoint AT dkhenze multiphasecmaqversion50adjoint AT pbpercell multiphasecmaqversion50adjoint AT jresler multiphasecmaqversion50adjoint AT hshen multiphasecmaqversion50adjoint AT agrussell multiphasecmaqversion50adjoint AT anenes multiphasecmaqversion50adjoint AT anenes multiphasecmaqversion50adjoint AT anenes multiphasecmaqversion50adjoint AT ajpappin multiphasecmaqversion50adjoint AT slnapelenok multiphasecmaqversion50adjoint AT jobash multiphasecmaqversion50adjoint AT kmfahey multiphasecmaqversion50adjoint AT grcarmichael multiphasecmaqversion50adjoint AT costanier multiphasecmaqversion50adjoint AT tchai multiphasecmaqversion50adjoint |