Deletion of Orai1 leads to bone loss aggravated with aging and impairs function of osteoblast lineage cells

Osteoblast lineage cells, a group of cells including mesenchymal progenitors, osteoblasts, and osteocytes, are tightly controlled for differentiation, proliferation and stage-specific functions in processes of skeletal development, growth and maintenance. Recently, the plasma membrane calcium channe...

Full description

Bibliographic Details
Main Authors: Hyewon Choi, Sonal Srikanth, Elisa Atti, Flavia Q. Pirih, Jeanne M. Nervina, Yousang Gwack, Sotirios Tetradis
Format: Article
Language:English
Published: Elsevier 2018-06-01
Series:Bone Reports
Online Access:http://www.sciencedirect.com/science/article/pii/S2352187218300184
Description
Summary:Osteoblast lineage cells, a group of cells including mesenchymal progenitors, osteoblasts, and osteocytes, are tightly controlled for differentiation, proliferation and stage-specific functions in processes of skeletal development, growth and maintenance. Recently, the plasma membrane calcium channel Orai1 was highlighted for its role in skeletal development and osteoblast differentiation. Yet the roles of Orai1 in osteoblast lineage cells at various stages of maturation have not been investigated. Herein we report the severe bone loss that occurred in Orai1−/− mice, aggravated by aging, as shown by the microcomputed tomography (mCT) and bone histomorphometry analysis of 8-week and 12-week old Orai1−/− mice and sex-matched WT littermates. We also report that Orai1 deficiency affected the differentiation, proliferation, and type I collagen secretion of primary calvarial osteoblasts, mesenchymal progenitors, and osteocytes in Orai1−/− mice; specifically, our study revealed a significant decrease in the expression of osteocytic genes Fgf23, DMP1 and Phex in the cortical long bone of Orai1−/− mice; a defective cellular and nuclear morphology of Orai1−/− osteocytes; and defective osteogenic differentiation of Orai1−/− primary calvarial osteoblasts (pOBs), including a decrease in extracellular-secretion of type I collagen. An increase in the mesenchymal progenitor population of Orai1−/− bone marrow cells was indicated by a colony forming unit-fibroblasts (CFU-F) assay, and the increased proliferation of Orai1−/− pOBs was indicated by an MTT assay. Notably, Orai1 deficiency reduced the nuclear localization and transcription activity of the Nuclear Factor of Activated T-cell c1 (NFATc1), a calcium-regulated transcription factor, in pOBs. Altogether, our study demonstrated the crucial role of Orai1 in bone development and maintenance, via its diverse effects on osteoblast lineage cells from mesenchymal progenitors to osteocytes. Keywords: Orai1, Osteoblast lineage cells, Bone, Knockout mice
ISSN:2352-1872