GLP-1/GLP-1R Signaling in Regulation of Adipocyte Differentiation and Lipogenesis
Background/Aims: The aim of this study was to determine the direct role of liraglutide (LG) in adipogenesis and lipid metabolism. Methods: Lipid accumulation was evaluated by oil red O staining, quantitative real-time PCR (qPCR) was performed to determine glucagon-like peptide 1 receptor (GLP-1R), f...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cell Physiol Biochem Press GmbH & Co KG
2017-06-01
|
Series: | Cellular Physiology and Biochemistry |
Subjects: | |
Online Access: | http://www.karger.com/Article/FullText/478872 |
Summary: | Background/Aims: The aim of this study was to determine the direct role of liraglutide (LG) in adipogenesis and lipid metabolism. Methods: Lipid accumulation was evaluated by oil red O staining, quantitative real-time PCR (qPCR) was performed to determine glucagon-like peptide 1 receptor (GLP-1R), fatty acid synthase (FASN) and adipose triglyceride lipase (ATGL) expression in 3T3-L1 preadipocytes, differentiated adipocytes and in adipose tissues from mice. The effects of LG on 3T3-L1 adipogenesis and lipid metabolism were analyzed with qPCR, Western Blotting, oil red O staining, immunohistochemistry (IHC) and immunofluorescence (IF). All measurements were performed at least three times. Results: LG increased the expression of differentiation marker genes and lipid accumulation during preadipocyte differentiation. In differentiated adipocytes, LG decreased FASN expression, and simultaneously led to CREB phosphorylation and ERK1/2 activation which were abolished by a GLP-1R antagonist, exendin (9-39). LG induced-FASN down-regulation was partially reversed by PKA and ERK1/2 inhibitors. Consistent with above in vitro findings, LG treatment significantly reduced FASN expression in visceral adipose tissues of ob/ob mice, and reduced body weight gain. Conclusion: LG promotes preadipocytes differentiation, and inhibits FASN expression in adipocytes. LG induced down-regulation of FASN is at least partially mediated by PKA and MAPK signaling pathways. |
---|---|
ISSN: | 1015-8987 1421-9778 |