Compensation for Electrode Detachment in Electrical Impedance Tomography with Wearable Textile Electrodes

Electrical impedance tomography (EIT) is a radiation-free and noninvasive medical image reconstruction technique in which a current is injected and the reflected voltage is received through electrodes. EIT electrodes require good connection with the skin for data acquisition and image reconstruction...

Full description

Bibliographic Details
Main Authors: Chang-Lin Hu, Zong-Yan Lin, Shu-Yun Hu, I-Cheng Cheng, Chih-Hsien Huang, Yu-Hao Li, Chien-Ju Li, Chii-Wann Lin
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/22/24/9575
Description
Summary:Electrical impedance tomography (EIT) is a radiation-free and noninvasive medical image reconstruction technique in which a current is injected and the reflected voltage is received through electrodes. EIT electrodes require good connection with the skin for data acquisition and image reconstruction. However, detached electrodes are a common occurrence and cause measurement errors in EIT clinical applications. To address these issues, in this study, we proposed a method for detecting faulty electrodes using the differential voltage value of the detached electrode in an EIT system. Additionally, we proposed the voltage-replace and voltage-shift methods to compensate for invalid data from the faulty electrodes. In this study, we present the simulation, experimental, and in vivo chest results of our proposed methods to verify and evaluate the feasibility of this approach.
ISSN:1424-8220