Targeting multi-loop integrals with neural networks

Numerical evaluations of Feynman integrals often proceed via a deformation of the integration contour into the complex plane. While valid contours are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to optimize t...

Full description

Bibliographic Details
Main Author: Ramon Winterhalder, Vitaly Magerya, Emilio Villa, Stephen P. Jones, Matthias Kerner, Anja Butter, Gudrun Heinrich, Tilman Plehn
Format: Article
Language:English
Published: SciPost 2022-04-01
Series:SciPost Physics
Online Access:https://scipost.org/SciPostPhys.12.4.129
_version_ 1818059716552556544
author Ramon Winterhalder, Vitaly Magerya, Emilio Villa, Stephen P. Jones, Matthias Kerner, Anja Butter, Gudrun Heinrich, Tilman Plehn
author_facet Ramon Winterhalder, Vitaly Magerya, Emilio Villa, Stephen P. Jones, Matthias Kerner, Anja Butter, Gudrun Heinrich, Tilman Plehn
author_sort Ramon Winterhalder, Vitaly Magerya, Emilio Villa, Stephen P. Jones, Matthias Kerner, Anja Butter, Gudrun Heinrich, Tilman Plehn
collection DOAJ
description Numerical evaluations of Feynman integrals often proceed via a deformation of the integration contour into the complex plane. While valid contours are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to optimize this contour using a combination of optimized, global complex shifts and a normalizing flow. They can lead to a significant gain in precision.
first_indexed 2024-12-10T13:20:57Z
format Article
id doaj.art-3e9c7d6e625649ee9ac416887bbfda0c
institution Directory Open Access Journal
issn 2542-4653
language English
last_indexed 2024-12-10T13:20:57Z
publishDate 2022-04-01
publisher SciPost
record_format Article
series SciPost Physics
spelling doaj.art-3e9c7d6e625649ee9ac416887bbfda0c2022-12-22T01:47:20ZengSciPostSciPost Physics2542-46532022-04-0112412910.21468/SciPostPhys.12.4.129Targeting multi-loop integrals with neural networksRamon Winterhalder, Vitaly Magerya, Emilio Villa, Stephen P. Jones, Matthias Kerner, Anja Butter, Gudrun Heinrich, Tilman PlehnNumerical evaluations of Feynman integrals often proceed via a deformation of the integration contour into the complex plane. While valid contours are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to optimize this contour using a combination of optimized, global complex shifts and a normalizing flow. They can lead to a significant gain in precision.https://scipost.org/SciPostPhys.12.4.129
spellingShingle Ramon Winterhalder, Vitaly Magerya, Emilio Villa, Stephen P. Jones, Matthias Kerner, Anja Butter, Gudrun Heinrich, Tilman Plehn
Targeting multi-loop integrals with neural networks
SciPost Physics
title Targeting multi-loop integrals with neural networks
title_full Targeting multi-loop integrals with neural networks
title_fullStr Targeting multi-loop integrals with neural networks
title_full_unstemmed Targeting multi-loop integrals with neural networks
title_short Targeting multi-loop integrals with neural networks
title_sort targeting multi loop integrals with neural networks
url https://scipost.org/SciPostPhys.12.4.129
work_keys_str_mv AT ramonwinterhaldervitalymageryaemiliovillastephenpjonesmatthiaskerneranjabuttergudrunheinrichtilmanplehn targetingmultiloopintegralswithneuralnetworks