Targeting multi-loop integrals with neural networks
Numerical evaluations of Feynman integrals often proceed via a deformation of the integration contour into the complex plane. While valid contours are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to optimize t...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SciPost
2022-04-01
|
Series: | SciPost Physics |
Online Access: | https://scipost.org/SciPostPhys.12.4.129 |
_version_ | 1818059716552556544 |
---|---|
author | Ramon Winterhalder, Vitaly Magerya, Emilio Villa, Stephen P. Jones, Matthias Kerner, Anja Butter, Gudrun Heinrich, Tilman Plehn |
author_facet | Ramon Winterhalder, Vitaly Magerya, Emilio Villa, Stephen P. Jones, Matthias Kerner, Anja Butter, Gudrun Heinrich, Tilman Plehn |
author_sort | Ramon Winterhalder, Vitaly Magerya, Emilio Villa, Stephen P. Jones, Matthias Kerner, Anja Butter, Gudrun Heinrich, Tilman Plehn |
collection | DOAJ |
description | Numerical evaluations of Feynman integrals often proceed via a deformation of
the integration contour into the complex plane. While valid contours are easy
to construct, the numerical precision for a multi-loop integral can depend
critically on the chosen contour. We present methods to optimize this contour
using a combination of optimized, global complex shifts and a normalizing flow.
They can lead to a significant gain in precision. |
first_indexed | 2024-12-10T13:20:57Z |
format | Article |
id | doaj.art-3e9c7d6e625649ee9ac416887bbfda0c |
institution | Directory Open Access Journal |
issn | 2542-4653 |
language | English |
last_indexed | 2024-12-10T13:20:57Z |
publishDate | 2022-04-01 |
publisher | SciPost |
record_format | Article |
series | SciPost Physics |
spelling | doaj.art-3e9c7d6e625649ee9ac416887bbfda0c2022-12-22T01:47:20ZengSciPostSciPost Physics2542-46532022-04-0112412910.21468/SciPostPhys.12.4.129Targeting multi-loop integrals with neural networksRamon Winterhalder, Vitaly Magerya, Emilio Villa, Stephen P. Jones, Matthias Kerner, Anja Butter, Gudrun Heinrich, Tilman PlehnNumerical evaluations of Feynman integrals often proceed via a deformation of the integration contour into the complex plane. While valid contours are easy to construct, the numerical precision for a multi-loop integral can depend critically on the chosen contour. We present methods to optimize this contour using a combination of optimized, global complex shifts and a normalizing flow. They can lead to a significant gain in precision.https://scipost.org/SciPostPhys.12.4.129 |
spellingShingle | Ramon Winterhalder, Vitaly Magerya, Emilio Villa, Stephen P. Jones, Matthias Kerner, Anja Butter, Gudrun Heinrich, Tilman Plehn Targeting multi-loop integrals with neural networks SciPost Physics |
title | Targeting multi-loop integrals with neural networks |
title_full | Targeting multi-loop integrals with neural networks |
title_fullStr | Targeting multi-loop integrals with neural networks |
title_full_unstemmed | Targeting multi-loop integrals with neural networks |
title_short | Targeting multi-loop integrals with neural networks |
title_sort | targeting multi loop integrals with neural networks |
url | https://scipost.org/SciPostPhys.12.4.129 |
work_keys_str_mv | AT ramonwinterhaldervitalymageryaemiliovillastephenpjonesmatthiaskerneranjabuttergudrunheinrichtilmanplehn targetingmultiloopintegralswithneuralnetworks |