Bayesian Regression Quantifies Uncertainty of Binding Parameters from Isothermal Titration Calorimetry More Accurately Than Error Propagation

We compare several different methods to quantify the uncertainty of binding parameters estimated from isothermal titration calorimetry data: the asymptotic standard error from maximum likelihood estimation, error propagation based on a first-order Taylor series expansion, and the Bayesian credible i...

Full description

Bibliographic Details
Main Authors: Van N. T. La, David D. L. Minh
Format: Article
Language:English
Published: MDPI AG 2023-10-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/24/20/15074
_version_ 1797573689866190848
author Van N. T. La
David D. L. Minh
author_facet Van N. T. La
David D. L. Minh
author_sort Van N. T. La
collection DOAJ
description We compare several different methods to quantify the uncertainty of binding parameters estimated from isothermal titration calorimetry data: the asymptotic standard error from maximum likelihood estimation, error propagation based on a first-order Taylor series expansion, and the Bayesian credible interval. When the methods are applied to simulated experiments and to measurements of Mg(II) binding to EDTA, the asymptotic standard error underestimates the uncertainty in the free energy and enthalpy of binding. Error propagation overestimates the uncertainty for both quantities, except in the simulations, where it underestimates the uncertainty of enthalpy for confidence intervals less than 70%. In both datasets, Bayesian credible intervals are much closer to observed confidence intervals.
first_indexed 2024-03-10T21:12:35Z
format Article
id doaj.art-3ea79e8bf83743a494525d4db8165afc
institution Directory Open Access Journal
issn 1661-6596
1422-0067
language English
last_indexed 2024-03-10T21:12:35Z
publishDate 2023-10-01
publisher MDPI AG
record_format Article
series International Journal of Molecular Sciences
spelling doaj.art-3ea79e8bf83743a494525d4db8165afc2023-11-19T16:41:14ZengMDPI AGInternational Journal of Molecular Sciences1661-65961422-00672023-10-0124201507410.3390/ijms242015074Bayesian Regression Quantifies Uncertainty of Binding Parameters from Isothermal Titration Calorimetry More Accurately Than Error PropagationVan N. T. La0David D. L. Minh1Department of Biology, Illinois Institute of Technology, Chicago, IL 60616, USADepartment of Chemistry, Illinois Institute of Technology, Chicago, IL 60616, USAWe compare several different methods to quantify the uncertainty of binding parameters estimated from isothermal titration calorimetry data: the asymptotic standard error from maximum likelihood estimation, error propagation based on a first-order Taylor series expansion, and the Bayesian credible interval. When the methods are applied to simulated experiments and to measurements of Mg(II) binding to EDTA, the asymptotic standard error underestimates the uncertainty in the free energy and enthalpy of binding. Error propagation overestimates the uncertainty for both quantities, except in the simulations, where it underestimates the uncertainty of enthalpy for confidence intervals less than 70%. In both datasets, Bayesian credible intervals are much closer to observed confidence intervals.https://www.mdpi.com/1422-0067/24/20/15074Isothermal Titration Calorimetry (ITC)Bayesian Credible Interval (BCI)Confidence Interval (CI)Asymptotic Standard Error (ASE)Maximum Likelihood Estimation (MLE)Error Propagation (EP)
spellingShingle Van N. T. La
David D. L. Minh
Bayesian Regression Quantifies Uncertainty of Binding Parameters from Isothermal Titration Calorimetry More Accurately Than Error Propagation
International Journal of Molecular Sciences
Isothermal Titration Calorimetry (ITC)
Bayesian Credible Interval (BCI)
Confidence Interval (CI)
Asymptotic Standard Error (ASE)
Maximum Likelihood Estimation (MLE)
Error Propagation (EP)
title Bayesian Regression Quantifies Uncertainty of Binding Parameters from Isothermal Titration Calorimetry More Accurately Than Error Propagation
title_full Bayesian Regression Quantifies Uncertainty of Binding Parameters from Isothermal Titration Calorimetry More Accurately Than Error Propagation
title_fullStr Bayesian Regression Quantifies Uncertainty of Binding Parameters from Isothermal Titration Calorimetry More Accurately Than Error Propagation
title_full_unstemmed Bayesian Regression Quantifies Uncertainty of Binding Parameters from Isothermal Titration Calorimetry More Accurately Than Error Propagation
title_short Bayesian Regression Quantifies Uncertainty of Binding Parameters from Isothermal Titration Calorimetry More Accurately Than Error Propagation
title_sort bayesian regression quantifies uncertainty of binding parameters from isothermal titration calorimetry more accurately than error propagation
topic Isothermal Titration Calorimetry (ITC)
Bayesian Credible Interval (BCI)
Confidence Interval (CI)
Asymptotic Standard Error (ASE)
Maximum Likelihood Estimation (MLE)
Error Propagation (EP)
url https://www.mdpi.com/1422-0067/24/20/15074
work_keys_str_mv AT vanntla bayesianregressionquantifiesuncertaintyofbindingparametersfromisothermaltitrationcalorimetrymoreaccuratelythanerrorpropagation
AT daviddlminh bayesianregressionquantifiesuncertaintyofbindingparametersfromisothermaltitrationcalorimetrymoreaccuratelythanerrorpropagation