Computational wave-based photoacoustic imaging through an unknown thick aberrating layer

We introduce a physics-based computational reconstruction framework for non-invasive photoacoustic tomography through a thick aberrating layer. Our wave-based approach leverages an analytic formulation of diffraction to beamform a photoacoustic image, when the aberrating layer profile is known. When...

Full description

Bibliographic Details
Main Authors: Yevgeny Slobodkin, Ori Katz
Format: Article
Language:English
Published: Elsevier 2024-04-01
Series:Photoacoustics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2213597924000016
Description
Summary:We introduce a physics-based computational reconstruction framework for non-invasive photoacoustic tomography through a thick aberrating layer. Our wave-based approach leverages an analytic formulation of diffraction to beamform a photoacoustic image, when the aberrating layer profile is known. When the profile of the aberrating layer is unknown, the same analytical formulation serves as the basis for an automatic-differentiation regularized optimization algorithm that simultaneously reconstructs both the profile of the aberrating layer and the optically absorbing targets. Results from numerical studies and proof-of-concept experiments show promise for fast beamforming that takes into account diffraction effects occurring in the propagation through thick, highly-aberrating layers.
ISSN:2213-5979