Robust Color Image Superresolution: An Adaptive M-Estimation Framework

This paper introduces a new color image superresolution algorithm in an adaptive, robust M-estimation framework. Using a robust error norm in the objective function, and adapting the estimation process to each of the low-resolution frames, the proposed method effectively suppresses the outliers due...

Full description

Bibliographic Details
Main Authors: Panos E. Papamichalis, Noha A. El-Yamany
Format: Article
Language:English
Published: SpringerOpen 2008-03-01
Series:EURASIP Journal on Image and Video Processing
Online Access:http://dx.doi.org/10.1155/2008/763254
_version_ 1828498879185682432
author Panos E. Papamichalis
Noha A. El-Yamany
author_facet Panos E. Papamichalis
Noha A. El-Yamany
author_sort Panos E. Papamichalis
collection DOAJ
description This paper introduces a new color image superresolution algorithm in an adaptive, robust M-estimation framework. Using a robust error norm in the objective function, and adapting the estimation process to each of the low-resolution frames, the proposed method effectively suppresses the outliers due to violations of the assumed observation model, and results in color superresolution estimates with crisp details and no color artifacts, without the use of regularization. Experiments on both synthetic and real sequences demonstrate the superior performance over using the L2 and L1 error norms in the objective function.
first_indexed 2024-12-11T13:13:56Z
format Article
id doaj.art-3ecaa844ca8342b3be3c9403dfb6723a
institution Directory Open Access Journal
issn 1687-5176
1687-5281
language English
last_indexed 2024-12-11T13:13:56Z
publishDate 2008-03-01
publisher SpringerOpen
record_format Article
series EURASIP Journal on Image and Video Processing
spelling doaj.art-3ecaa844ca8342b3be3c9403dfb6723a2022-12-22T01:06:06ZengSpringerOpenEURASIP Journal on Image and Video Processing1687-51761687-52812008-03-01200810.1155/2008/763254Robust Color Image Superresolution: An Adaptive M-Estimation FrameworkPanos E. PapamichalisNoha A. El-YamanyThis paper introduces a new color image superresolution algorithm in an adaptive, robust M-estimation framework. Using a robust error norm in the objective function, and adapting the estimation process to each of the low-resolution frames, the proposed method effectively suppresses the outliers due to violations of the assumed observation model, and results in color superresolution estimates with crisp details and no color artifacts, without the use of regularization. Experiments on both synthetic and real sequences demonstrate the superior performance over using the L2 and L1 error norms in the objective function.http://dx.doi.org/10.1155/2008/763254
spellingShingle Panos E. Papamichalis
Noha A. El-Yamany
Robust Color Image Superresolution: An Adaptive M-Estimation Framework
EURASIP Journal on Image and Video Processing
title Robust Color Image Superresolution: An Adaptive M-Estimation Framework
title_full Robust Color Image Superresolution: An Adaptive M-Estimation Framework
title_fullStr Robust Color Image Superresolution: An Adaptive M-Estimation Framework
title_full_unstemmed Robust Color Image Superresolution: An Adaptive M-Estimation Framework
title_short Robust Color Image Superresolution: An Adaptive M-Estimation Framework
title_sort robust color image superresolution an adaptive m estimation framework
url http://dx.doi.org/10.1155/2008/763254
work_keys_str_mv AT panosepapamichalis robustcolorimagesuperresolutionanadaptivemestimationframework
AT nohaaelyamany robustcolorimagesuperresolutionanadaptivemestimationframework