Using SKPFM to Determine the Influence of Deformation-Induced Dislocations on the Volta Potential of Copper
The variation rule of the Volta potential on deformed copper surfaces with the dislocation density is determined in this study by using electron back-scattered diffraction (EBSD) in conjunction with scanning Kelvin probe force microscopy (SKPFM). The results show that the Volta potential is not line...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-07-01
|
Series: | Metals |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-4701/11/8/1166 |
Summary: | The variation rule of the Volta potential on deformed copper surfaces with the dislocation density is determined in this study by using electron back-scattered diffraction (EBSD) in conjunction with scanning Kelvin probe force microscopy (SKPFM). The results show that the Volta potential is not linear in the dislocation density. When the dislocation density increases due to the deformation of pure copper, the Volta potential tends to a physical limit. The Volta potential exhibits a fractional function relationship with the dislocation density only for a relatively low shape variable. |
---|---|
ISSN: | 2075-4701 |