Summary: | The surface microstructure of a catalyst coating layer directly affects the active area, hydrophilicity and hydrophobicity, and the high porosity is desirable especially for solid–liquid–gas three-phase catalytic reactions. However, it remains challenging to customize catalyst distribution during the coating process. Here, we report a simple strategy for achieving ultrafine nanocatalyst deposition in a porous structure via introducing the surfactant into coating inks. For a proof-of-concept demonstration, we spin-coated the nanoscale IrO<sub>2</sub> sol with a surfactant of sodium dodecyl sulfate (SDS) onto the glassy carbon (GC) electrode for oxygen evolution reaction (OER). Due to the surfactant action, the deposited IrO<sub>2</sub> nanocatalyst is evenly distributed and interconnected into a highly porous overlayer, which facilitates electrolyte permeation, gas bubble elimination and active-site accessibility, thus affording high-performance OER in alkaline media. Particularly, the SDS-modified electrodes enable the industrial-level high-current-density performance via enhanced mass transfer kinetics. Such manipulation is effective to improve the coating electrodes’ catalytic activity and stability, and scalable for practical applications and suggestive for other gas-evolving electrodes.
|