Patterns of risk—Using machine learning and structural neuroimaging to identify pedophilic offenders

BackgroundChild sexual abuse (CSA) has become a focal point for lawmakers, law enforcement, and mental health professionals. With high prevalence rates around the world and far-reaching, often chronic, individual, and societal implications, CSA and its leading risk factor, pedophilia, have been well...

Full description

Bibliographic Details
Main Authors: David Popovic, Maximilian Wertz, Carolin Geisler, Joern Kaufmann, Markku Lähteenvuo, Johannes Lieslehto, Joachim Witzel, Bernhard Bogerts, Martin Walter, Peter Falkai, Nikolaos Koutsouleris, Kolja Schiltz
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-04-01
Series:Frontiers in Psychiatry
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1001085/full
_version_ 1797843768705024000
author David Popovic
David Popovic
David Popovic
David Popovic
Maximilian Wertz
Maximilian Wertz
Carolin Geisler
Joern Kaufmann
Markku Lähteenvuo
Markku Lähteenvuo
Johannes Lieslehto
Joachim Witzel
Bernhard Bogerts
Bernhard Bogerts
Martin Walter
Peter Falkai
Peter Falkai
Peter Falkai
Nikolaos Koutsouleris
Nikolaos Koutsouleris
Nikolaos Koutsouleris
Nikolaos Koutsouleris
Kolja Schiltz
Kolja Schiltz
author_facet David Popovic
David Popovic
David Popovic
David Popovic
Maximilian Wertz
Maximilian Wertz
Carolin Geisler
Joern Kaufmann
Markku Lähteenvuo
Markku Lähteenvuo
Johannes Lieslehto
Joachim Witzel
Bernhard Bogerts
Bernhard Bogerts
Martin Walter
Peter Falkai
Peter Falkai
Peter Falkai
Nikolaos Koutsouleris
Nikolaos Koutsouleris
Nikolaos Koutsouleris
Nikolaos Koutsouleris
Kolja Schiltz
Kolja Schiltz
author_sort David Popovic
collection DOAJ
description BackgroundChild sexual abuse (CSA) has become a focal point for lawmakers, law enforcement, and mental health professionals. With high prevalence rates around the world and far-reaching, often chronic, individual, and societal implications, CSA and its leading risk factor, pedophilia, have been well investigated. This has led to a wide range of clinical tools and actuarial instruments for diagnosis and risk assessment regarding CSA. However, the neurobiological underpinnings of pedosexual behavior, specifically regarding hands-on pedophilic offenders (PO), remain elusive. Such biomarkers for PO individuals could potentially improve the early detection of high-risk PO individuals and enhance efforts to prevent future CSA.AimTo use machine learning and MRI data to identify PO individuals.MethodsFrom a single-center male cohort of 14 PO individuals and 15 matched healthy control (HC) individuals, we acquired diffusion tensor imaging data (anisotropy, diffusivity, and fiber tracking) in literature-based regions of interest (prefrontal cortex, anterior cingulate cortex, amygdala, and corpus callosum). We trained a linear support vector machine to discriminate between PO and HC individuals using these WM microstructure data. Post hoc, we investigated the PO model decision scores with respect to sociodemographic (age, education, and IQ) and forensic characteristics (psychopathy, sexual deviance, and future risk of sexual violence) in the PO subpopulation. We assessed model specificity in an external cohort of 53 HC individuals.ResultsThe classifier discriminated PO from HC individuals with a balanced accuracy of 75.5% (sensitivity = 64.3%, specificity = 86.7%, P5000 = 0.018) and an out-of-sample specificity to correctly identify HC individuals of 94.3%. The predictive brain pattern contained bilateral fractional anisotropy in the anterior cingulate cortex, diffusivity in the left amygdala, and structural prefrontal cortex-amygdala connectivity in both hemispheres. This brain pattern was associated with the number of previous child victims, the current stance on sexuality, and the professionally assessed risk of future sexual violent reoffending.ConclusionAberrant white matter microstructure in the prefronto-temporo-limbic circuit could be a potential neurobiological correlate for PO individuals at high-risk of reoffending with CSA. Although preliminary and exploratory at this point, our findings highlight the general potential of MRI-based biomarkers and particularly WM microstructure patterns for future CSA risk assessment and preventive efforts.
first_indexed 2024-04-09T17:11:17Z
format Article
id doaj.art-3edb6e69e4444b2f933753478f5b1ac7
institution Directory Open Access Journal
issn 1664-0640
language English
last_indexed 2024-04-09T17:11:17Z
publishDate 2023-04-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Psychiatry
spelling doaj.art-3edb6e69e4444b2f933753478f5b1ac72023-04-20T05:53:17ZengFrontiers Media S.A.Frontiers in Psychiatry1664-06402023-04-011410.3389/fpsyt.2023.10010851001085Patterns of risk—Using machine learning and structural neuroimaging to identify pedophilic offendersDavid Popovic0David Popovic1David Popovic2David Popovic3Maximilian Wertz4Maximilian Wertz5Carolin Geisler6Joern Kaufmann7Markku Lähteenvuo8Markku Lähteenvuo9Johannes Lieslehto10Joachim Witzel11Bernhard Bogerts12Bernhard Bogerts13Martin Walter14Peter Falkai15Peter Falkai16Peter Falkai17Nikolaos Koutsouleris18Nikolaos Koutsouleris19Nikolaos Koutsouleris20Nikolaos Koutsouleris21Kolja Schiltz22Kolja Schiltz23Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, GermanyDepartment of Forensic Psychiatry, Ludwig-Maximilians-University Munich, Munich, GermanyInternational Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, GermanyMax Planck Institute of Psychiatry, Munich, GermanyDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, GermanyDepartment of Forensic Psychiatry, Ludwig-Maximilians-University Munich, Munich, GermanyDepartment of Dermatology, Venereology, and Allergology, Charité - Universitätsmedizin Berlin, Berlin, GermanyDepartment of Neurology, Otto-von-Guericke-University, Magdeburg, GermanyDepartment of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, FinlandInstitute for Molecular Medicine FIMM, University of Helsinki, Helsinki, FinlandDepartment of Forensic Psychiatry, University of Eastern Finland, Niuvanniemi Hospital, Kuopio, FinlandCentral State Forensic Psychiatric Hospital of Saxony-Anhalt, Uchtspringe, Germany0Salus Institut, Salus gGmbH, Magdeburg, Germany1Department of Psychiatry and Psychotherapy, Otto-von-Guericke-University, Magdeburg, Germany2Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, GermanyDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, GermanyInternational Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, GermanyMax Planck Institute of Psychiatry, Munich, GermanyDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, GermanyInternational Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, GermanyMax Planck Institute of Psychiatry, Munich, Germany3Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United KingdomDepartment of Psychiatry and Psychotherapy, Ludwig-Maximilians-University Munich, Munich, GermanyDepartment of Forensic Psychiatry, Ludwig-Maximilians-University Munich, Munich, GermanyBackgroundChild sexual abuse (CSA) has become a focal point for lawmakers, law enforcement, and mental health professionals. With high prevalence rates around the world and far-reaching, often chronic, individual, and societal implications, CSA and its leading risk factor, pedophilia, have been well investigated. This has led to a wide range of clinical tools and actuarial instruments for diagnosis and risk assessment regarding CSA. However, the neurobiological underpinnings of pedosexual behavior, specifically regarding hands-on pedophilic offenders (PO), remain elusive. Such biomarkers for PO individuals could potentially improve the early detection of high-risk PO individuals and enhance efforts to prevent future CSA.AimTo use machine learning and MRI data to identify PO individuals.MethodsFrom a single-center male cohort of 14 PO individuals and 15 matched healthy control (HC) individuals, we acquired diffusion tensor imaging data (anisotropy, diffusivity, and fiber tracking) in literature-based regions of interest (prefrontal cortex, anterior cingulate cortex, amygdala, and corpus callosum). We trained a linear support vector machine to discriminate between PO and HC individuals using these WM microstructure data. Post hoc, we investigated the PO model decision scores with respect to sociodemographic (age, education, and IQ) and forensic characteristics (psychopathy, sexual deviance, and future risk of sexual violence) in the PO subpopulation. We assessed model specificity in an external cohort of 53 HC individuals.ResultsThe classifier discriminated PO from HC individuals with a balanced accuracy of 75.5% (sensitivity = 64.3%, specificity = 86.7%, P5000 = 0.018) and an out-of-sample specificity to correctly identify HC individuals of 94.3%. The predictive brain pattern contained bilateral fractional anisotropy in the anterior cingulate cortex, diffusivity in the left amygdala, and structural prefrontal cortex-amygdala connectivity in both hemispheres. This brain pattern was associated with the number of previous child victims, the current stance on sexuality, and the professionally assessed risk of future sexual violent reoffending.ConclusionAberrant white matter microstructure in the prefronto-temporo-limbic circuit could be a potential neurobiological correlate for PO individuals at high-risk of reoffending with CSA. Although preliminary and exploratory at this point, our findings highlight the general potential of MRI-based biomarkers and particularly WM microstructure patterns for future CSA risk assessment and preventive efforts.https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1001085/fullpedophiliaMRIchild sexual abuse (CSA)support vector machinesmachine learningforensic psychiatry
spellingShingle David Popovic
David Popovic
David Popovic
David Popovic
Maximilian Wertz
Maximilian Wertz
Carolin Geisler
Joern Kaufmann
Markku Lähteenvuo
Markku Lähteenvuo
Johannes Lieslehto
Joachim Witzel
Bernhard Bogerts
Bernhard Bogerts
Martin Walter
Peter Falkai
Peter Falkai
Peter Falkai
Nikolaos Koutsouleris
Nikolaos Koutsouleris
Nikolaos Koutsouleris
Nikolaos Koutsouleris
Kolja Schiltz
Kolja Schiltz
Patterns of risk—Using machine learning and structural neuroimaging to identify pedophilic offenders
Frontiers in Psychiatry
pedophilia
MRI
child sexual abuse (CSA)
support vector machines
machine learning
forensic psychiatry
title Patterns of risk—Using machine learning and structural neuroimaging to identify pedophilic offenders
title_full Patterns of risk—Using machine learning and structural neuroimaging to identify pedophilic offenders
title_fullStr Patterns of risk—Using machine learning and structural neuroimaging to identify pedophilic offenders
title_full_unstemmed Patterns of risk—Using machine learning and structural neuroimaging to identify pedophilic offenders
title_short Patterns of risk—Using machine learning and structural neuroimaging to identify pedophilic offenders
title_sort patterns of risk using machine learning and structural neuroimaging to identify pedophilic offenders
topic pedophilia
MRI
child sexual abuse (CSA)
support vector machines
machine learning
forensic psychiatry
url https://www.frontiersin.org/articles/10.3389/fpsyt.2023.1001085/full
work_keys_str_mv AT davidpopovic patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT davidpopovic patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT davidpopovic patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT davidpopovic patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT maximilianwertz patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT maximilianwertz patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT carolingeisler patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT joernkaufmann patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT markkulahteenvuo patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT markkulahteenvuo patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT johanneslieslehto patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT joachimwitzel patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT bernhardbogerts patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT bernhardbogerts patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT martinwalter patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT peterfalkai patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT peterfalkai patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT peterfalkai patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT nikolaoskoutsouleris patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT nikolaoskoutsouleris patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT nikolaoskoutsouleris patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT nikolaoskoutsouleris patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT koljaschiltz patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders
AT koljaschiltz patternsofriskusingmachinelearningandstructuralneuroimagingtoidentifypedophilicoffenders