Second order ODE; Dirichlet problem; variational method; critical point

In this note, we prove the existence of a solution to the semilinear second order ordinary differential equation $$displaylines{ u''(x)+ r(x) u'+g(x,u)=f(x),,cr x(0)=x(pi)=0,, }$$ using a variational method and critical point theory.

Bibliographic Details
Main Author: Petr Tomiczek
Format: Article
Language:English
Published: Texas State University 2007-05-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2007/81/abstr.html
_version_ 1811219347987759104
author Petr Tomiczek
author_facet Petr Tomiczek
author_sort Petr Tomiczek
collection DOAJ
description In this note, we prove the existence of a solution to the semilinear second order ordinary differential equation $$displaylines{ u''(x)+ r(x) u'+g(x,u)=f(x),,cr x(0)=x(pi)=0,, }$$ using a variational method and critical point theory.
first_indexed 2024-04-12T07:24:48Z
format Article
id doaj.art-3ee0e5d5b6e34b0baf7d077a5ef636fa
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-04-12T07:24:48Z
publishDate 2007-05-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-3ee0e5d5b6e34b0baf7d077a5ef636fa2022-12-22T03:42:13ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912007-05-0120078113Second order ODE; Dirichlet problem; variational method; critical pointPetr TomiczekIn this note, we prove the existence of a solution to the semilinear second order ordinary differential equation $$displaylines{ u''(x)+ r(x) u'+g(x,u)=f(x),,cr x(0)=x(pi)=0,, }$$ using a variational method and critical point theory.http://ejde.math.txstate.edu/Volumes/2007/81/abstr.htmlSecond order ODEDirichlet problemvariational methodcritical point
spellingShingle Petr Tomiczek
Second order ODE; Dirichlet problem; variational method; critical point
Electronic Journal of Differential Equations
Second order ODE
Dirichlet problem
variational method
critical point
title Second order ODE; Dirichlet problem; variational method; critical point
title_full Second order ODE; Dirichlet problem; variational method; critical point
title_fullStr Second order ODE; Dirichlet problem; variational method; critical point
title_full_unstemmed Second order ODE; Dirichlet problem; variational method; critical point
title_short Second order ODE; Dirichlet problem; variational method; critical point
title_sort second order ode dirichlet problem variational method critical point
topic Second order ODE
Dirichlet problem
variational method
critical point
url http://ejde.math.txstate.edu/Volumes/2007/81/abstr.html
work_keys_str_mv AT petrtomiczek secondorderodedirichletproblemvariationalmethodcriticalpoint