Generalized Solutions of Ordinary Differential Equations Related to the Chebyshev Polynomial of the Second Kind

In this work, we employed the Laplace transform of right-sided distributions in conjunction with the power series method to obtain distributional solutions to the modified Bessel equation and its related equation, whose coefficients contain the parameters <inline-formula><math xmlns="h...

Full description

Bibliographic Details
Main Authors: Waritsara Thongthai, Kamsing Nonlaopon, Somsak Orankitjaroen, Chenkuan Li
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/11/7/1725
_version_ 1827746735607250944
author Waritsara Thongthai
Kamsing Nonlaopon
Somsak Orankitjaroen
Chenkuan Li
author_facet Waritsara Thongthai
Kamsing Nonlaopon
Somsak Orankitjaroen
Chenkuan Li
author_sort Waritsara Thongthai
collection DOAJ
description In this work, we employed the Laplace transform of right-sided distributions in conjunction with the power series method to obtain distributional solutions to the modified Bessel equation and its related equation, whose coefficients contain the parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>. We demonstrated that the solutions can be expressed as finite linear combinations of the Dirac delta function and its derivatives, with the specific form depending on the values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>.
first_indexed 2024-03-11T05:30:31Z
format Article
id doaj.art-3ee88256d67d4168a06d0dc3ba52bbc5
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-11T05:30:31Z
publishDate 2023-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-3ee88256d67d4168a06d0dc3ba52bbc52023-11-17T17:09:46ZengMDPI AGMathematics2227-73902023-04-01117172510.3390/math11071725Generalized Solutions of Ordinary Differential Equations Related to the Chebyshev Polynomial of the Second KindWaritsara Thongthai0Kamsing Nonlaopon1Somsak Orankitjaroen2Chenkuan Li3Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, ThailandDepartment of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, ThailandDepartment of Mathematics, Faculty of Science, Mahidol University, Bangkok 10400, ThailandDepartment of Mathematics and Computer Science, Brandon University, Brandon, MB R7A 6A9, CanadaIn this work, we employed the Laplace transform of right-sided distributions in conjunction with the power series method to obtain distributional solutions to the modified Bessel equation and its related equation, whose coefficients contain the parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>. We demonstrated that the solutions can be expressed as finite linear combinations of the Dirac delta function and its derivatives, with the specific form depending on the values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/11/7/1725Dirac delta functiondistributional solutiongeneralized solutionsLaplace transformpower series solution
spellingShingle Waritsara Thongthai
Kamsing Nonlaopon
Somsak Orankitjaroen
Chenkuan Li
Generalized Solutions of Ordinary Differential Equations Related to the Chebyshev Polynomial of the Second Kind
Mathematics
Dirac delta function
distributional solution
generalized solutions
Laplace transform
power series solution
title Generalized Solutions of Ordinary Differential Equations Related to the Chebyshev Polynomial of the Second Kind
title_full Generalized Solutions of Ordinary Differential Equations Related to the Chebyshev Polynomial of the Second Kind
title_fullStr Generalized Solutions of Ordinary Differential Equations Related to the Chebyshev Polynomial of the Second Kind
title_full_unstemmed Generalized Solutions of Ordinary Differential Equations Related to the Chebyshev Polynomial of the Second Kind
title_short Generalized Solutions of Ordinary Differential Equations Related to the Chebyshev Polynomial of the Second Kind
title_sort generalized solutions of ordinary differential equations related to the chebyshev polynomial of the second kind
topic Dirac delta function
distributional solution
generalized solutions
Laplace transform
power series solution
url https://www.mdpi.com/2227-7390/11/7/1725
work_keys_str_mv AT waritsarathongthai generalizedsolutionsofordinarydifferentialequationsrelatedtothechebyshevpolynomialofthesecondkind
AT kamsingnonlaopon generalizedsolutionsofordinarydifferentialequationsrelatedtothechebyshevpolynomialofthesecondkind
AT somsakorankitjaroen generalizedsolutionsofordinarydifferentialequationsrelatedtothechebyshevpolynomialofthesecondkind
AT chenkuanli generalizedsolutionsofordinarydifferentialequationsrelatedtothechebyshevpolynomialofthesecondkind