Adaptive Granulation-Based Convolutional Neural Networks With Single Pass Learning for Remote Sensing Image Classification
Convolutional neural networks (CNNs) with the characteristics like spatial filtering, feed-forward mechanism, and back propagation-based learning are being widely used recently for remote sensing (RS) image classification. The fixed architecture of CNN with a large number of network parameters is ma...
Hlavní autoři: | Sankar K. Pal, Dasari Arun Kumar |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
IEEE
2023-01-01
|
Edice: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
Témata: | |
On-line přístup: | https://ieeexplore.ieee.org/document/9954889/ |
Podobné jednotky
-
Optimal Granulation Selection Method Based on Multi-granulation Rough Intuitionistic Hesitant Fuzzy Sets
Autor: XUE Zhan-ao, SUN Bing-xin, HOU Hao-dong, JING Meng-meng
Vydáno: (2021-10-01) -
Homogenous Granulation and Its Epsilon Variant
Autor: Krzysztof Ropiak, a další
Vydáno: (2019-05-01) -
On Knowledge Granulation and Applications to Classifier Induction in the Framework of Rough Mereology
Autor: Lech Polkowski, a další
Vydáno: (2009-12-01) -
About Granular Rough Computing—Overview of Decision System Approximation Techniques and Future Perspectives
Autor: Piotr Artiemjew
Vydáno: (2020-03-01) -
Feature Selection for Partially Labeled Data Based on Neighborhood Granulation Measures
Autor: Bingyang Li, a další
Vydáno: (2019-01-01)