Deep learning with microfluidics for on-chip droplet generation, control, and analysis

Droplet microfluidics has gained widespread attention in recent years due to its advantages of high throughput, high integration, high sensitivity and low power consumption in droplet-based micro-reaction. Meanwhile, with the rapid development of computer technology over the past decade, deep learni...

Full description

Bibliographic Details
Main Authors: Hao Sun, Wantao Xie, Jin Mo, Yi Huang, Hui Dong
Format: Article
Language:English
Published: Frontiers Media S.A. 2023-06-01
Series:Frontiers in Bioengineering and Biotechnology
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fbioe.2023.1208648/full
Description
Summary:Droplet microfluidics has gained widespread attention in recent years due to its advantages of high throughput, high integration, high sensitivity and low power consumption in droplet-based micro-reaction. Meanwhile, with the rapid development of computer technology over the past decade, deep learning architectures have been able to process vast amounts of data from various research fields. Nowadays, interdisciplinarity plays an increasingly important role in modern research, and deep learning has contributed greatly to the advancement of many professions. Consequently, intelligent microfluidics has emerged as the times require, and possesses broad prospects in the development of automated and intelligent devices for integrating the merits of microfluidic technology and artificial intelligence. In this article, we provide a general review of the evolution of intelligent microfluidics and some applications related to deep learning, mainly in droplet generation, control, and analysis. We also present the challenges and emerging opportunities in this field.
ISSN:2296-4185