Summary: | In this study, copper films were deposited by magnetron sputtering on poly(ethylene terephthalate) knitted textile to fabricate multi-functional, antimicrobial composite material. The modified knitted textile composites were subjected to microbial activity tests against colonies of Gram-positive (<i>Staphylococcus aureus</i>) and Gram-negative (<i>Escherichia coli</i>) bacteria and antifungal tests against <i>Chaetomium globosum</i> fungal molds species. The prepared samples were characterized by UV/VIS transmittance, scanning electron microscopy (SEM), tensile and filtration parameters and the ability to block UV radiation. The performed works proved the possibility of manufacturing a new generation of antimicrobial textile composites with barrier properties against UV radiation, produced by a simple, zero-waste method. The specific advantages of using new poly(ethylene terephthalate)-copper composites are in biomedical applications areas.
|