Summary: | In this study, 1 wt% platinum (Pt) nanoparticles were incorporated into five types of zeolites (HY, Beta, mordenite, ZSM-5, and ferrierite) with an impregnation technique. The synthesis strategy included the use of water as a solvent for the applied Pt source. Moreover, the incorporation process was performed at ambient conditions followed by calcination at 450 °C. The five prepared materials were characterized by different physical and chemical characterization techniques and the obtained results confirmed the formation of Pt nanoparticles with an average size of 5–10 nm. The catalytic performance of the prepared materials was evaluated in the hydrogenation of cyclohexene under a solvent-free system at room temperature. Pt nanoparticles supported on ZSM-5 zeolite exhibited the best catalytic performance. Moreover, the optimization of operational conditions such as temperature, pressure, and catalyst amount was investigated and the obtained results showed the possibility to convert 100% of cyclohexene within 35 min over Pt-ZSM-5. Finally, the reusability of the Pt-ZSM-5 catalyst was investigated in four consecutive runs without treatment and the obtained results showed a negligible activity loss.
|