Optical Sensor Based on a Single CdS Nanobelt

In this paper, an optical sensor based on a cadmium sulfide (CdS) nanobelt has been developed. The CdS nanobelt was synthesized by the vapor phase transportation (VPT) method. X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) results revealed that the nanobelt had a hexagonal wurtzi...

Full description

Bibliographic Details
Main Authors: Lei Li, Shuming Yang, Feng Han, Liangjun Wang, Xiaotong Zhang, Zhuangde Jiang, Anlian Pan
Format: Article
Language:English
Published: MDPI AG 2014-04-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/14/4/7332
Description
Summary:In this paper, an optical sensor based on a cadmium sulfide (CdS) nanobelt has been developed. The CdS nanobelt was synthesized by the vapor phase transportation (VPT) method. X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) results revealed that the nanobelt had a hexagonal wurtzite structure of CdS and presented good crystal quality. A single nanobelt Schottky contact optical sensor was fabricated by the electron beam lithography (EBL) technique, and the device current-voltage results showed back-to-back Schottky diode characteristics. The photosensitivity, dark current and the decay time of the sensor were 4 × 104, 31 ms and 0.2 pA, respectively. The high photosensitivity and the short decay time were because of the exponential dependence of photocurrent on the number of the surface charges and the configuration of the back to back Schottky junctions.
ISSN:1424-8220