A novel intensity-based multi-level classification approach for coronary plaque characterization in intravascular ultrasound images

Abstract Background Intravascular ultrasound (IVUS) is a commonly used diagnostic imaging method for coronary artery disease. Virtual histology (VH) characterizes the plaque components into fibrous tissue (FT), fibro-fatty tissue (FFT), necrotic core (NC), or dense calcium (DC). However, VH can obta...

Full description

Bibliographic Details
Main Authors: Ga Young Kim, Ju Hwan Lee, Yoo Na Hwang, Sung Min Kim
Format: Article
Language:English
Published: BMC 2018-11-01
Series:BioMedical Engineering OnLine
Online Access:http://link.springer.com/article/10.1186/s12938-018-0586-1
Description
Summary:Abstract Background Intravascular ultrasound (IVUS) is a commonly used diagnostic imaging method for coronary artery disease. Virtual histology (VH) characterizes the plaque components into fibrous tissue (FT), fibro-fatty tissue (FFT), necrotic core (NC), or dense calcium (DC). However, VH can obtain only a single-frame image in one cardiac cycle, and specific software is needed to obtain the radio frequency data. This study proposed a novel intensity-based multi-level classification model for plaque characterization. Methods The plaque-containing regions between the intima and the media-adventitia were segmented manually for all IVUS frames. A total of 54 features including first order statistics, grey level co-occurrence matrix, Law’s energy measures, extended grey level run length matrix, intensity, and local binary pattern were estimated from the plaque-containing regions. After feature extraction, optimal features were selected using principle component analysis (PCA), and these were utilized as the input for the classification models. Plaque components were classified into FT, FFT, NC, or DC using an intensity-based multi-level classification model consisting of three different nets. Net 1 differentiated low-intensity components into FT/FFT and NC/DC groups. Then, net 2 subsequently divided FT/FFT into FT or FFT, whereas the remainder and high-intensity components were classified into NC or DC via net 3. To improve classification accuracy, each net utilized three different input features obtained by PCA. Classification performance was evaluated in terms of sensitivity, specificity, accuracy, and receiver operating characteristic curve. Results Quantitative results indicated that the proposed method showed significantly high classification accuracy for all tissue types. The classifiers had classification accuracies of 85.1%, 71.9%, and 77.2%, respectively, and the areas under the curve were 0.845, 0.704, and 0.783. In particular, the proposed method achieved relatively high sensitivity (82.0%) and specificity (87.1%) for differentiating between the FT/FFT and NC/DC groups. Conclusions These results confirmed the clinical applicability of the proposed approach for IVUS-based tissue characterization.
ISSN:1475-925X