Sensitive colorimetric assay using insulin G-quadruplex aptamer arrays on DNA nanotubes coupled with magnetic nanoparticles

Described here is a methodology for fabrication of a sensitive colorimetric nanoassay for measurement of insulin using G-quadruplex aptamer arrays on DNA nanotubes (DNTs) coupled with magnetic nanoparticles. The spectroscopic findings (e.g. visible spectra, velocity assay and limit of detection dete...

Full description

Bibliographic Details
Main Authors: A. Rafati, A. Zarrabi, S. Abediankenari, M. Aarabi, P. Gill
Format: Article
Language:English
Published: The Royal Society 2018-01-01
Series:Royal Society Open Science
Subjects:
Online Access:https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.171835
Description
Summary:Described here is a methodology for fabrication of a sensitive colorimetric nanoassay for measurement of insulin using G-quadruplex aptamer arrays on DNA nanotubes (DNTs) coupled with magnetic nanoparticles. The spectroscopic findings (e.g. visible spectra, velocity assay and limit of detection determination) indicated a highly sensitive performance of this new nanoassay in comparison to those results obtained from the insulin assay with non-arrayed aptamers. The clinical performance statistics (i.e. paired sample t-test, Bland–Altman plot and scatter diagram) from the newly developed assay and the enzyme-linked immunosorbent assay suggested its reliable precision and its acceptable repeatability for measurement of insulin in human sera. This is, to our knowledge, the first study for the application of magnetic nanoparticle-coupled DNTs for carrying G-quadruplex aptamers for detection of biomolecules (such as insulin) in human serum.
ISSN:2054-5703