A novel synbiotic delays Alzheimer's disease onset via combinatorial gut-brain-axis signaling in Drosophila melanogaster.

The gut-brain-axis (GBA) describing the bidirectional communication between the gut microbiota and brain was recently implicated in Alzheimer's disease (AD). The current study describes a novel synbiotic containing three metabolically active probiotics and a novel polyphenol-rich prebiotic whic...

Full description

Bibliographic Details
Main Authors: Susan Westfall, Nikita Lomis, Satya Prakash
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0214985
Description
Summary:The gut-brain-axis (GBA) describing the bidirectional communication between the gut microbiota and brain was recently implicated in Alzheimer's disease (AD). The current study describes a novel synbiotic containing three metabolically active probiotics and a novel polyphenol-rich prebiotic which has beneficial impacts on the onset and progression of AD. In a transgenic humanized Drosophila melanogaster model of AD, the synbiotic increased survivability and motility and rescued amyloid beta deposition and acetylcholinesterase activity. Such drastic effects were due to the synbiotic's combinatorial action on GBA signaling pathways including metabolic stability, immune signaling, oxidative and mitochondrial stress possibly through pathways implicating PPARγ. Overall, this study shows that the therapeutic potential of GBA signaling is best harnessed in a synbiotic that simultaneously targets multiple risk factors of AD.
ISSN:1932-6203