Scattering amplitudes and simple canonical forms for simple polytopes

Abstract We provide an efficient recursive formula to compute the canonical forms of arbitrary d-dimensional simple polytopes, which are convex polytopes such that every vertex lies precisely on d facets. For illustration purposes, we explicitly derive recursive formulae for the canonical forms of S...

Full description

Bibliographic Details
Main Authors: Giulio Salvatori, Stefan Stanojevic
Format: Article
Language:English
Published: SpringerOpen 2021-03-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP03(2021)067
Description
Summary:Abstract We provide an efficient recursive formula to compute the canonical forms of arbitrary d-dimensional simple polytopes, which are convex polytopes such that every vertex lies precisely on d facets. For illustration purposes, we explicitly derive recursive formulae for the canonical forms of Stokes polytopes, which play a similar role for a theory with quartic interaction as the Associahedron does in planar bi-adjoint ϕ 3 theory. As a by-product, our formula also suggests a new way to obtain the full planar amplitude in ϕ 4 theory by taking suitable limits of the canonical forms of constituent Stokes polytopes.
ISSN:1029-8479