Novel Integral Inequalities on Nabla Time Scales with <i>C</i>-Monotonic Functions

Through the paper, we present several inequalities involving <i>C</i>-monotonic functions with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mo>≥</mo><mn...

Full description

Bibliographic Details
Main Authors: Mohammed Zakarya, A. I. Saied, Maha Ali, Haytham M. Rezk, Mohammed R. Kenawy
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/6/1248
_version_ 1797592493523468288
author Mohammed Zakarya
A. I. Saied
Maha Ali
Haytham M. Rezk
Mohammed R. Kenawy
author_facet Mohammed Zakarya
A. I. Saied
Maha Ali
Haytham M. Rezk
Mohammed R. Kenawy
author_sort Mohammed Zakarya
collection DOAJ
description Through the paper, we present several inequalities involving <i>C</i>-monotonic functions with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mo>≥</mo><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula> on nabla calculus via time scales. It is known that dynamic inequalities generate many different inequalities in different calculus. The main results will be proved by applying the chain rule formula on nabla calculus. As a special case for our results, when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">T</mi><mo>=</mo><mi mathvariant="double-struck">R</mi><mo>,</mo></mrow></semantics></math></inline-formula> we obtain the continuous analouges of inequalities that had previously been proved in the literature. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">T</mi><mo>=</mo><mi mathvariant="double-struck">N</mi></mrow></semantics></math></inline-formula>, the results, to the best of the authors’ knowledge, are essentially new. Symmetrical properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi></mrow></semantics></math></inline-formula>-monotonic functions are critical in determining the best way to solve inequalities.
first_indexed 2024-03-11T01:52:55Z
format Article
id doaj.art-3f5ca0eb12c54b7b94a79366bc3a7e60
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-11T01:52:55Z
publishDate 2023-06-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-3f5ca0eb12c54b7b94a79366bc3a7e602023-11-18T12:51:31ZengMDPI AGSymmetry2073-89942023-06-01156124810.3390/sym15061248Novel Integral Inequalities on Nabla Time Scales with <i>C</i>-Monotonic FunctionsMohammed Zakarya0A. I. Saied1Maha Ali2Haytham M. Rezk3Mohammed R. Kenawy4Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi ArabiaDepartment of Mathematics, Faculty of Science, Benha University, Benha 13511, EgyptDepartment of Mathematics, College of Arts and Sciences, Sarat Abidah, King Khalid University, P.O. Box 64512, Abha 62529, Saudi ArabiaDepartment of Mathematics, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, EgyptDepartment of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, EgyptThrough the paper, we present several inequalities involving <i>C</i>-monotonic functions with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi><mo>≥</mo><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula> on nabla calculus via time scales. It is known that dynamic inequalities generate many different inequalities in different calculus. The main results will be proved by applying the chain rule formula on nabla calculus. As a special case for our results, when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">T</mi><mo>=</mo><mi mathvariant="double-struck">R</mi><mo>,</mo></mrow></semantics></math></inline-formula> we obtain the continuous analouges of inequalities that had previously been proved in the literature. When <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="double-struck">T</mi><mo>=</mo><mi mathvariant="double-struck">N</mi></mrow></semantics></math></inline-formula>, the results, to the best of the authors’ knowledge, are essentially new. Symmetrical properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>C</mi></mrow></semantics></math></inline-formula>-monotonic functions are critical in determining the best way to solve inequalities.https://www.mdpi.com/2073-8994/15/6/1248<i>C</i>-monotonic functionstime scalesnabla calculuschain rule on nabla calculusinequalities
spellingShingle Mohammed Zakarya
A. I. Saied
Maha Ali
Haytham M. Rezk
Mohammed R. Kenawy
Novel Integral Inequalities on Nabla Time Scales with <i>C</i>-Monotonic Functions
Symmetry
<i>C</i>-monotonic functions
time scales
nabla calculus
chain rule on nabla calculus
inequalities
title Novel Integral Inequalities on Nabla Time Scales with <i>C</i>-Monotonic Functions
title_full Novel Integral Inequalities on Nabla Time Scales with <i>C</i>-Monotonic Functions
title_fullStr Novel Integral Inequalities on Nabla Time Scales with <i>C</i>-Monotonic Functions
title_full_unstemmed Novel Integral Inequalities on Nabla Time Scales with <i>C</i>-Monotonic Functions
title_short Novel Integral Inequalities on Nabla Time Scales with <i>C</i>-Monotonic Functions
title_sort novel integral inequalities on nabla time scales with i c i monotonic functions
topic <i>C</i>-monotonic functions
time scales
nabla calculus
chain rule on nabla calculus
inequalities
url https://www.mdpi.com/2073-8994/15/6/1248
work_keys_str_mv AT mohammedzakarya novelintegralinequalitiesonnablatimescaleswithicimonotonicfunctions
AT aisaied novelintegralinequalitiesonnablatimescaleswithicimonotonicfunctions
AT mahaali novelintegralinequalitiesonnablatimescaleswithicimonotonicfunctions
AT haythammrezk novelintegralinequalitiesonnablatimescaleswithicimonotonicfunctions
AT mohammedrkenawy novelintegralinequalitiesonnablatimescaleswithicimonotonicfunctions