An Experimental Study on the Dielectric Properties of Rubber Materials

According to specific formulas, the mixing of rubber samples occurs by two methods: open mixing and internal mixing. The effects of frequency, mixing process, carbon black (CB) content, zinc oxide (ZnO) content, and stearic acid (SA) content on the dielectric properties of rubber materials were stud...

Full description

Bibliographic Details
Main Authors: Hailong Chen, Yudong Xu, Mengqi Liu, Tao Li
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/13/17/2908
Description
Summary:According to specific formulas, the mixing of rubber samples occurs by two methods: open mixing and internal mixing. The effects of frequency, mixing process, carbon black (CB) content, zinc oxide (ZnO) content, and stearic acid (SA) content on the dielectric properties of rubber materials were studied. The results showed that the effects of the mixing process on the dielectric properties of the rubber samples cannot be ignored, and the appropriate mixing process should be selected when preparing the required rubber materials. The dielectric constant and loss factor of the rubber samples vary depending on the frequency. The dielectric constant had a peak and valley value, while the loss factor only had a peak. The dielectric constant and loss factor of rubber samples were significantly affected by the content of CB, ZnO, and SA. The peak frequency decreased with the increase in CB content, however, the dielectric constant increased with an increase in CB content. The higher the ZnO content, the lower the peak frequency. In addition, the dielectric constant and loss factor increased with an increase in ZnO content. The higher the SA content, the greater the peak frequency. In addition, the dielectric constant and loss factor decreased with an increase in SA content. It is hoped that the experimental results obtained can provide guidance for the study of the dielectric properties, microwave absorption properties, and microwave heating characteristics of rubber polymers.
ISSN:2073-4360