Design of an Isolated Bidirectional Symmetric Resonant Converter

An isolated type bidirectional resonant converter is presented in this paper. Using a dual active bridge as the main topology and integrating symmetric resonant mechanism, the developed converter features an isolated type bidirectional resonant converter with bidirectional power conversion and elect...

Full description

Bibliographic Details
Main Authors: Yih-Her Yan, Hung-Liang Cheng, Shun-Yu Chan, Yu-Da Chen, Yong-Nong Chang
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/22/8144
Description
Summary:An isolated type bidirectional resonant converter is presented in this paper. Using a dual active bridge as the main topology and integrating symmetric resonant mechanism, the developed converter features an isolated type bidirectional resonant converter with bidirectional power conversion and electrical isolation capabilities to ensure working security and stability. The application of a symmetric resonant scheme enables the control range of input and output voltages to be widened and achieves soft switching during bidirectional power conversion. A converter design process covering all the bases is exhibited in this work. With the digital signal processor (DSP) TMS320F28335 being employed as the control core, the developed isolated bidirectional resonant converter can effectively handle the power conversion between the simulated 400 V DC grid and the energy storage battery ranging from 280 to 403 V. Based on a 1 kW capacity design, the test data reveal that the forward conversion efficiency from grid to battery can reach 93.25%, and the reverse conversion efficiency from battery to grid is as high as 94.60%.
ISSN:2076-3417