On the Boundary Value Problem of Nonlinear Fractional Integro-Differential Equations

Using Banach’s contractive principle and the Laray–Schauder fixed point theorem, we study the uniqueness and existence of solutions to a nonlinear two-term fractional integro-differential equation with the boundary condition based on Babenko’s approach and the Mittag–Leffler function. The current wo...

Full description

Bibliographic Details
Main Authors: Chenkuan Li, Reza Saadati, Rekha Srivastava, Joshua Beaudin
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/12/1971
Description
Summary:Using Banach’s contractive principle and the Laray–Schauder fixed point theorem, we study the uniqueness and existence of solutions to a nonlinear two-term fractional integro-differential equation with the boundary condition based on Babenko’s approach and the Mittag–Leffler function. The current work also corrects major errors in the published paper dealing with a one-term differential equation. Furthermore, we provide examples to illustrate the application of our main theorems.
ISSN:2227-7390