Laboratory evolution, transcriptomics, and modeling reveal mechanisms of paraquat tolerance

Summary: Relationships between the genome, transcriptome, and metabolome underlie all evolved phenotypes. However, it has proved difficult to elucidate these relationships because of the high number of variables measured. A recently developed data analytic method for characterizing the transcriptome...

Full description

Bibliographic Details
Main Authors: Kevin Rychel, Justin Tan, Arjun Patel, Cameron Lamoureux, Ying Hefner, Richard Szubin, Josefin Johnsen, Elsayed Tharwat Tolba Mohamed, Patrick V. Phaneuf, Amitesh Anand, Connor A. Olson, Joon Ho Park, Anand V. Sastry, Laurence Yang, Adam M. Feist, Bernhard O. Palsson
Format: Article
Language:English
Published: Elsevier 2023-09-01
Series:Cell Reports
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211124723011166
_version_ 1797685290944430080
author Kevin Rychel
Justin Tan
Arjun Patel
Cameron Lamoureux
Ying Hefner
Richard Szubin
Josefin Johnsen
Elsayed Tharwat Tolba Mohamed
Patrick V. Phaneuf
Amitesh Anand
Connor A. Olson
Joon Ho Park
Anand V. Sastry
Laurence Yang
Adam M. Feist
Bernhard O. Palsson
author_facet Kevin Rychel
Justin Tan
Arjun Patel
Cameron Lamoureux
Ying Hefner
Richard Szubin
Josefin Johnsen
Elsayed Tharwat Tolba Mohamed
Patrick V. Phaneuf
Amitesh Anand
Connor A. Olson
Joon Ho Park
Anand V. Sastry
Laurence Yang
Adam M. Feist
Bernhard O. Palsson
author_sort Kevin Rychel
collection DOAJ
description Summary: Relationships between the genome, transcriptome, and metabolome underlie all evolved phenotypes. However, it has proved difficult to elucidate these relationships because of the high number of variables measured. A recently developed data analytic method for characterizing the transcriptome can simplify interpretation by grouping genes into independently modulated sets (iModulons). Here, we demonstrate how iModulons reveal deep understanding of the effects of causal mutations and metabolic rewiring. We use adaptive laboratory evolution to generate E. coli strains that tolerate high levels of the redox cycling compound paraquat, which produces reactive oxygen species (ROS). We combine resequencing, iModulons, and metabolic models to elucidate six interacting stress-tolerance mechanisms: (1) modification of transport, (2) activation of ROS stress responses, (3) use of ROS-sensitive iron regulation, (4) motility, (5) broad transcriptional reallocation toward growth, and (6) metabolic rewiring to decrease NADH production. This work thus demonstrates the power of iModulon knowledge mapping for evolution analysis.
first_indexed 2024-03-12T00:42:04Z
format Article
id doaj.art-3fa5f4f1b24a41dda13d125aac6d22b6
institution Directory Open Access Journal
issn 2211-1247
language English
last_indexed 2024-03-12T00:42:04Z
publishDate 2023-09-01
publisher Elsevier
record_format Article
series Cell Reports
spelling doaj.art-3fa5f4f1b24a41dda13d125aac6d22b62023-09-15T04:39:29ZengElsevierCell Reports2211-12472023-09-01429113105Laboratory evolution, transcriptomics, and modeling reveal mechanisms of paraquat toleranceKevin Rychel0Justin Tan1Arjun Patel2Cameron Lamoureux3Ying Hefner4Richard Szubin5Josefin Johnsen6Elsayed Tharwat Tolba Mohamed7Patrick V. Phaneuf8Amitesh Anand9Connor A. Olson10Joon Ho Park11Anand V. Sastry12Laurence Yang13Adam M. Feist14Bernhard O. Palsson15Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USANovo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, DenmarkNovo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, DenmarkNovo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, DenmarkTata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, Maharashtra, IndiaDepartment of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USADepartment of Chemical Engineering, Massachusetts Institute of Technology, 500 Main Street, Building 76, Cambridge, MA 02139, USADepartment of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USADepartment of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, CanadaDepartment of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, DenmarkDepartment of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark; Corresponding authorSummary: Relationships between the genome, transcriptome, and metabolome underlie all evolved phenotypes. However, it has proved difficult to elucidate these relationships because of the high number of variables measured. A recently developed data analytic method for characterizing the transcriptome can simplify interpretation by grouping genes into independently modulated sets (iModulons). Here, we demonstrate how iModulons reveal deep understanding of the effects of causal mutations and metabolic rewiring. We use adaptive laboratory evolution to generate E. coli strains that tolerate high levels of the redox cycling compound paraquat, which produces reactive oxygen species (ROS). We combine resequencing, iModulons, and metabolic models to elucidate six interacting stress-tolerance mechanisms: (1) modification of transport, (2) activation of ROS stress responses, (3) use of ROS-sensitive iron regulation, (4) motility, (5) broad transcriptional reallocation toward growth, and (6) metabolic rewiring to decrease NADH production. This work thus demonstrates the power of iModulon knowledge mapping for evolution analysis.http://www.sciencedirect.com/science/article/pii/S2211124723011166CP: Microbiology
spellingShingle Kevin Rychel
Justin Tan
Arjun Patel
Cameron Lamoureux
Ying Hefner
Richard Szubin
Josefin Johnsen
Elsayed Tharwat Tolba Mohamed
Patrick V. Phaneuf
Amitesh Anand
Connor A. Olson
Joon Ho Park
Anand V. Sastry
Laurence Yang
Adam M. Feist
Bernhard O. Palsson
Laboratory evolution, transcriptomics, and modeling reveal mechanisms of paraquat tolerance
Cell Reports
CP: Microbiology
title Laboratory evolution, transcriptomics, and modeling reveal mechanisms of paraquat tolerance
title_full Laboratory evolution, transcriptomics, and modeling reveal mechanisms of paraquat tolerance
title_fullStr Laboratory evolution, transcriptomics, and modeling reveal mechanisms of paraquat tolerance
title_full_unstemmed Laboratory evolution, transcriptomics, and modeling reveal mechanisms of paraquat tolerance
title_short Laboratory evolution, transcriptomics, and modeling reveal mechanisms of paraquat tolerance
title_sort laboratory evolution transcriptomics and modeling reveal mechanisms of paraquat tolerance
topic CP: Microbiology
url http://www.sciencedirect.com/science/article/pii/S2211124723011166
work_keys_str_mv AT kevinrychel laboratoryevolutiontranscriptomicsandmodelingrevealmechanismsofparaquattolerance
AT justintan laboratoryevolutiontranscriptomicsandmodelingrevealmechanismsofparaquattolerance
AT arjunpatel laboratoryevolutiontranscriptomicsandmodelingrevealmechanismsofparaquattolerance
AT cameronlamoureux laboratoryevolutiontranscriptomicsandmodelingrevealmechanismsofparaquattolerance
AT yinghefner laboratoryevolutiontranscriptomicsandmodelingrevealmechanismsofparaquattolerance
AT richardszubin laboratoryevolutiontranscriptomicsandmodelingrevealmechanismsofparaquattolerance
AT josefinjohnsen laboratoryevolutiontranscriptomicsandmodelingrevealmechanismsofparaquattolerance
AT elsayedtharwattolbamohamed laboratoryevolutiontranscriptomicsandmodelingrevealmechanismsofparaquattolerance
AT patrickvphaneuf laboratoryevolutiontranscriptomicsandmodelingrevealmechanismsofparaquattolerance
AT amiteshanand laboratoryevolutiontranscriptomicsandmodelingrevealmechanismsofparaquattolerance
AT connoraolson laboratoryevolutiontranscriptomicsandmodelingrevealmechanismsofparaquattolerance
AT joonhopark laboratoryevolutiontranscriptomicsandmodelingrevealmechanismsofparaquattolerance
AT anandvsastry laboratoryevolutiontranscriptomicsandmodelingrevealmechanismsofparaquattolerance
AT laurenceyang laboratoryevolutiontranscriptomicsandmodelingrevealmechanismsofparaquattolerance
AT adammfeist laboratoryevolutiontranscriptomicsandmodelingrevealmechanismsofparaquattolerance
AT bernhardopalsson laboratoryevolutiontranscriptomicsandmodelingrevealmechanismsofparaquattolerance