Akbari–Ganji Method for Solving Equations of Euler–Bernoulli Beam with Quintic Nonlinearity

In many real word applications, beam has nonlinear transversely vibrations. Solving nonlinear beam systems is complicated because of the high dependency of the system variables and boundary conditions. It is important to have an accurate parametric analysis for understanding the nonlinear vibration...

Full description

Bibliographic Details
Main Authors: Iman Khatami, Mohsen Zahedi, Abolfazl Zahedi, Mohammad Yaghoub Abdollahzadeh Jamalabadi
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Acoustics
Subjects:
Online Access:https://www.mdpi.com/2624-599X/3/2/23
_version_ 1797534789053448192
author Iman Khatami
Mohsen Zahedi
Abolfazl Zahedi
Mohammad Yaghoub Abdollahzadeh Jamalabadi
author_facet Iman Khatami
Mohsen Zahedi
Abolfazl Zahedi
Mohammad Yaghoub Abdollahzadeh Jamalabadi
author_sort Iman Khatami
collection DOAJ
description In many real word applications, beam has nonlinear transversely vibrations. Solving nonlinear beam systems is complicated because of the high dependency of the system variables and boundary conditions. It is important to have an accurate parametric analysis for understanding the nonlinear vibration characteristics. This paper presents an approximate solution of a nonlinear transversely vibrating beam with odd and even nonlinear terms using the Akbari–Ganji Method (AGM). This method is an effective approach to solve nonlinear differential equations. AGM is already used in the heat transfer science for solving differential equations, and in this research for the first time, it is applied to find the approximate solution of a nonlinear transversely vibrating beam. The advantage of creating new boundary conditions in this method in additional to predefined boundary conditions is checked for the proposed nonlinear case. To illustrate the applicability and accuracy of the AGM, the governing equation of transversely vibrating nonlinear beams is treated with different initial conditions. Since simply supported and clamped-clamped structures can be encountered in many engineering applications, these two boundary conditions are considered. The periodic response curves and the natural frequency are obtained by AGM and contrasted with the energy balance method (EBM) and the numerical solution. The results show that the present method has excellent agreements in contrast with numerical and EBM calculations. In most cases, AGM is applied straightforwardly to obtain the nonlinear frequency– amplitude relationship for dynamic behaviour of vibrating beams. The natural frequencies tested for various values of amplitude are clearly stated the AGM is an applicable method for the proposed nonlinear system. It is demonstrated that this technique saves computational time without compromising the accuracy of the solution. This approach can be easily extended to other nonlinear systems and is therefore widely applicable in engineering and other sciences.
first_indexed 2024-03-10T11:35:28Z
format Article
id doaj.art-3fa7ee6dd07f42ef81a69209e3370d94
institution Directory Open Access Journal
issn 2624-599X
language English
last_indexed 2024-03-10T11:35:28Z
publishDate 2021-05-01
publisher MDPI AG
record_format Article
series Acoustics
spelling doaj.art-3fa7ee6dd07f42ef81a69209e3370d942023-11-21T18:53:52ZengMDPI AGAcoustics2624-599X2021-05-013233735310.3390/acoustics3020023Akbari–Ganji Method for Solving Equations of Euler–Bernoulli Beam with Quintic NonlinearityIman Khatami0Mohsen Zahedi1Abolfazl Zahedi2Mohammad Yaghoub Abdollahzadeh Jamalabadi3Department of Mechanical Engineering, Chabahar Maritime University, Chabahar 99717-56499, IranDepartment of Computer Engineering, University of Isfahan, Isfahan 81746-73441, IranSchool of Engineering and Sustainable Development, De Montfort University, Leicester LE1 9BH, UKDepartment of Mechanical Engineering, Chabahar Maritime University, Chabahar 99717-56499, IranIn many real word applications, beam has nonlinear transversely vibrations. Solving nonlinear beam systems is complicated because of the high dependency of the system variables and boundary conditions. It is important to have an accurate parametric analysis for understanding the nonlinear vibration characteristics. This paper presents an approximate solution of a nonlinear transversely vibrating beam with odd and even nonlinear terms using the Akbari–Ganji Method (AGM). This method is an effective approach to solve nonlinear differential equations. AGM is already used in the heat transfer science for solving differential equations, and in this research for the first time, it is applied to find the approximate solution of a nonlinear transversely vibrating beam. The advantage of creating new boundary conditions in this method in additional to predefined boundary conditions is checked for the proposed nonlinear case. To illustrate the applicability and accuracy of the AGM, the governing equation of transversely vibrating nonlinear beams is treated with different initial conditions. Since simply supported and clamped-clamped structures can be encountered in many engineering applications, these two boundary conditions are considered. The periodic response curves and the natural frequency are obtained by AGM and contrasted with the energy balance method (EBM) and the numerical solution. The results show that the present method has excellent agreements in contrast with numerical and EBM calculations. In most cases, AGM is applied straightforwardly to obtain the nonlinear frequency– amplitude relationship for dynamic behaviour of vibrating beams. The natural frequencies tested for various values of amplitude are clearly stated the AGM is an applicable method for the proposed nonlinear system. It is demonstrated that this technique saves computational time without compromising the accuracy of the solution. This approach can be easily extended to other nonlinear systems and is therefore widely applicable in engineering and other sciences.https://www.mdpi.com/2624-599X/3/2/23nonlinear beam transverse vibrationquintic nonlinear beamAkbari–Ganji Methodenergy balance method
spellingShingle Iman Khatami
Mohsen Zahedi
Abolfazl Zahedi
Mohammad Yaghoub Abdollahzadeh Jamalabadi
Akbari–Ganji Method for Solving Equations of Euler–Bernoulli Beam with Quintic Nonlinearity
Acoustics
nonlinear beam transverse vibration
quintic nonlinear beam
Akbari–Ganji Method
energy balance method
title Akbari–Ganji Method for Solving Equations of Euler–Bernoulli Beam with Quintic Nonlinearity
title_full Akbari–Ganji Method for Solving Equations of Euler–Bernoulli Beam with Quintic Nonlinearity
title_fullStr Akbari–Ganji Method for Solving Equations of Euler–Bernoulli Beam with Quintic Nonlinearity
title_full_unstemmed Akbari–Ganji Method for Solving Equations of Euler–Bernoulli Beam with Quintic Nonlinearity
title_short Akbari–Ganji Method for Solving Equations of Euler–Bernoulli Beam with Quintic Nonlinearity
title_sort akbari ganji method for solving equations of euler bernoulli beam with quintic nonlinearity
topic nonlinear beam transverse vibration
quintic nonlinear beam
Akbari–Ganji Method
energy balance method
url https://www.mdpi.com/2624-599X/3/2/23
work_keys_str_mv AT imankhatami akbariganjimethodforsolvingequationsofeulerbernoullibeamwithquinticnonlinearity
AT mohsenzahedi akbariganjimethodforsolvingequationsofeulerbernoullibeamwithquinticnonlinearity
AT abolfazlzahedi akbariganjimethodforsolvingequationsofeulerbernoullibeamwithquinticnonlinearity
AT mohammadyaghoubabdollahzadehjamalabadi akbariganjimethodforsolvingequationsofeulerbernoullibeamwithquinticnonlinearity